Development of an insecticide prototype using the secretions on the parotoides glands of Rhinella schneideri toad
DOI:
https://doi.org/10.18227/rsd.v7i1.7667Keywords:
insecticide, Rhinella schneideri, toad, cockroaches, Nauphoeta cinereaAbstract
Introduction: chemical substances able of eliminating and/or repelling insects are known as insecticides. When the need to use insecticides arose, highly toxic chemical compounds were used and these acted not only on insects but also on humans and the environment. From this, several studies were initiated with the objective of finding or synthesizing new compounds with selective action only for insects. Objectives: the objective of this study was, from studies of the toxicity of the secretions of the parotoid glands of the toad Rhinella schneideri, to elaborate an insecticide prototype. Methods: for this, the acute toxicity test and evaluation of the topical insecticidal activity in cockroaches of the genus Nauphoeta were performed. Results: in the acute toxicity test four solutions were tested, composed of different concentrations of secretions from the parotoid glands (10; 0.1; 0.01, and 0.001 mg/mL) of the toad Rhinella schneideri. The 10 mg/mL solution was the only one capable of killing all of the cockroaches. From this concentration, a second acute toxicity test was performed in which it was observed that at a concentration of 6 mg/mL, approximately half of the cockroach group died. The topical bioassay was carried out from the elaboration of an insecticide prototype composed of 10 mg/mL of the toad's parotoid gland poison in 20% of the organic solvent (acetone), used as a vehicle. In this bioassay, the death of all cockroaches was verified after 24h. Conclusion: it was possible to conclude that the insecticide prototype elaborated from the secretions of the parotoid glands of the toad Rhinella schneideri, using the organic solvent acetone 20% as the vehicle, was able to eliminate the cockroaches of the genus Nauphoeta, thus revealing the efficiency of the prototype developed.
Downloads
References
ASHURST, J.V.; NAPPE, T.M. Methanol Toxicity [Updated 2021 Jun 26]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. Disponível em: https://www.ncbi.nlm. nih.gov/books/NBK482121/ Acesso em 25 fev 2022.
BARBOSA, F. R.; SILVA, C. S. B.; CARVALHO, G. K. L.Uso de inseticidas alternativos no controle de pragas agrícolas. Petrolina: Embrapa Semiárido, 2006, 7-8 p. Disponível em: http://www.cpatsa.embrapa.br/public_ eletronica/downloads/SDC191.pdf. Acesso em: 25 nov. 2019.
BARRAVIERA, B. Venenos animais: uma visão integrada. 1. ed. Rio de Janeiro: Editoria de Publicações científicas, 1994.
BETANCUR, I. G.; GOGINENI, V.; OSPINA, A. S.; LEÓN, F. Perspective on the therapeutics of anti-snake venom. Molecules, USA, v. 24, p. 3276, 2019.
BÓKONY, V. et al. Toads phenotypically adjust their chemical defences to anthropogenic habitat change. Scientific Reports, v. 9, n. 3163, 2019.
BOMAN, H. G. Peptide antibiotics and their role in innate immunity. Annual Review of Immunology, Stockholm, v. 13, p. 61-92, 1995.
CARDOSO, J.L.C., FRANÇA, F.O.S., FAN, H.W., MÁLAQUE, C.M.S., HADDAD. JR. V. (2009) Animais peçonhentos no Brasil: biologia, clínica e terapêutica dos acidentes. São Paulo: Sarvier. 550p.
CATY, S. N. et al. Molecular physiology of chemical defenses in a poison frog. Journal of Experimental Biology, v. 222, n. 12, p. 1-12, 2019.
CHANDLER, D. et al. The development, regulation and use of biopesticides for integrated pest management. Phil. Trans. R. Soc. B, v. 12, n. 366, p. 1987-1998, 2011.
CHANG, J. et al. Bv8-Like Toxin from the Frog Venom of Amolops jingdongensis Promotes Wound Healing via the Interleukin-1 Signaling Pathway. Toxins, v.12, n.15, p. 1-14, 2020.
CHINEDU, E.; AROME, D.; AMEH, F.S. A New Method for Determining Acute Toxicity in Animal Models. Toxicology International, India, v. 20, n. 3, p. 224-226, 2013.
CLARKE, B. T. The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biological Reviews of the Cambridge Philosophical Society, v. 72, n. 3, p. 365-379, 1997.
COSTA, T. O. G. Purificação e Determinação Estrutural de Substâncias Bioativas em Três Espécies de Osteocephalus (Amphibia: Anura: Hylidae). 2005. 201 f. Tese (Doutorado em Química). - Instituto de Química da Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro.
DORNELLES, M. F.; MARQUES, M. G. B.; RENNER, M. F. Revisão sobre toxinas de Anura (Tetrapoda, Lissamphibia) e suas aplicações biotecnológicas. Revista Ciência em Movimento - Biociências e Saúde, Porto Alegre, v. 12, n. 24, p. 103-117, 2010.
ESCALONA, M. H.; FIALLO, V. R. F.; HERNANDEZ, M. M. A.; PACHECO, R. A.; A.J.A., E. T. P. Plaguicidas naturales de origen botánico. Habana: CIDISAV, 1998. 105 p.
FRANÇA, J. M. S. A composição do veneno do sapo cururuzinho muda de acordo com a sua dieta? Dissertação (Mestrado em Ecologia e Tecnologia Ambiental) –Universidade Federal de Alfenas (Unifal), Alfenas, Minas Gerais, p. 60, 2015.
FUNASA (2001). Controle de vetores: procedimentos de segurança. Fundação Nacional de Saúde. Brasília, Brasil, 187p. Disponível em: http://bvsms.saude.gov.br/bvs/ publicacoes/funasa/controle_vetores.pdf. Acesso 19 novembro 2018.
GARDENAL, I. Pesquisas desvendam funções de proteínas presentes em venenos de cobras. Jornal da UNICAMP, Campinas, n. 457, p.6-7, 2010.
GARG, A.; HIPPARGI, R.; GANDHARE, A. Toad skinsecretions: Potent source of pharmacologically and therapeutically significant compounds. The Internet Journal of Pharmacology, v.5, n. 2. 2007.
GOMES, A. et al. Bioactive molecules from amphibian skin: Their biological activities with reference to therapeutic potentials for possible drug development. Indian Journal of Experimental Biology, India, v. 45, p. 579-593, 2007.
HONG, Z.; CHAN, K.; YEUNG, H. W. Simultaneous determination of bufadienolides in the traditional Chinese medicine preparation, liu-shen-wan, by liquid chromatography. Journal of Pharmacy and Pharmacology, China, v. 44, n. 12, p. 6-1023, 1992.
JARED, C.; ANTONIAZZI, M. M. Anfíbios: biologia e venenos. In: CARDOSO et al. (Ed.). Animais Peçonhentos no Brasil. 2. ed. São Paulo: SARVIER, 2009. cap. 31, p. 317-328.
KLAASSEN, C. D.; WATKINS, J. B. Fundamentos em Toxicologia. 2. ed. Porto Alegre: AMGH, 2010. KO, W.S. et al. Induction of apoptosis by Chan Su, a traditional Chinese medicine, in human bladder carcinoma T24 cells. Oncology Reports, Coréia, v. 14, n. 2, p. 80-475, 2005.
KUMAR, S. Biopesticides: a need for food and environmental safety. J Biofertil Biopestic, v.3, n.4, p. 1-3, 2012.
MACIEL, N. M. et al. Composition of indolealkylamines of Bufo rubescens cutaneous secretions compared to six others Brazilian bufonids with phylogenetic implications. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, Oxford, v. 134, n. 4, p. 641-649, 2003.
MAZID, S., KALIDA, J.C., RAJKHOWA, R.C. A review on the use of biopesticides in insect pest management. Int J Sci Adv Technol, v. 1, p. 169–178, 2011.
OBARA, M. T. et al. Caracterização de resistência a inseticidas em populações da subfamília Triatominae (Hemiptera: Reduviidae), vetores de Trypanosoma cruzi Chagas, 1909. Tese (Doutorado) – Programa de Pósgraduação em Saúde Pública – Faculdade de Saúde Pública da Universidade de São Paulo, p. 247, 2010.
OLIVEIRA, L. M.; LUCAS, A. J. S.; CADAVEL. C. L.; MELLADO, M. S. Bread enriched with flour from cinereous cockroach (Nauphoeta cinerea). Innovative Food Science & Emerging Technologies. V. 44, p. 30-35, 2017.
PENATTI, F. E. Determinação dos potenciais toxicológicos em organismos aquáticos de resíduos de misturas de solventes orgânicos utilizados em laboratórios. Tese (Doutorado) – Escola Superior de Agricultura “Luiz de Queiroz”, Centro de Energia Nuclear na Agricultura. Piracicaba, São Paulo, p. 131, 2015.
PRADHAN, S.; MISHRA, D.; SAHU, K. R. Herpetofauna used as traditional medicine by tribes of Gandhamardan Hills Range, Western Orissa, India. International Journal of Research in Zoology, India, v.4, n.2, p.32-35, 2014.
PUBCHEM [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004. PubChem Compound Summary for CID 180, Acetone. Disponível em: https://pubchem.ncbi.nlm.nih. gov/compound/Acetone Acesso em 22 fev 2022.
RAAYMAKERS, C. et al. A new family of diverse skin peptides from the microhylid frog genus phrynomantis. Molecules, v. 18, n. 25, p. 1-18, 2020.
RAAYMAKERS, C. et al. Antimicrobial peptides in frog poisons constitute a molecular toxin delivery system against predators. Nature communications, v. 8, p. 1495, 2017.
REYES, M.; ANGULO, V. M.; SANDOVAL, C. M. Efecto tóxico de beta-cipermetrina, deltametrina y fenitrotión encepas de Triatoma dimidiate (Latreile, 1811) y Triatoma maculate (Erichson, 1848) (Hemiptera, Reduviidae). Biomédica, v. 27, n. 1, p. 75-82, 2007.
SEGATTO, A. L. A. et al. De novo transcriptome assembly of the lobster cockroach Nauphoeta cinerea (Blaberidae). Genet. Mol. Biol., Ribeirão Preto, v. 41, n. 3, p. 713-721, 2018.
SILVA, F. V. A.; MONTEIRO, W. M.; BERNARDE, P. S. “Kambô” frog (Phyllomedusa bicolor): use in folk medicine and potential health risks. Rev. Soc. Bras. Med. Trop., v. 52, p. 1-2, 2019.
ULLAH, M. I. et al. Arthropods venom used as biopersticides: a new challenge to manage insect pests. Int. J. Agric. Sci., v. 9, n. 1, p. 122-131, 2017.
VALLEJO, J. R.; GONZÁLEZ, J. A. Los anfibios en la medicina popular española, la farmacopea de Plinio y el Dioscórides. História, Ciências, Saúde - Manguinhos, Rio de Janeiro, v.22, n.4, p.1283-1319, 2015.
VÁZQUEZ, P. E. et al. Uso medicinal de la fauna silvestre em los altos de Chiapas, México. Red de Revistas Cientificas de America Latina y el Caribe, España y Portugal, v. 31, n.7, p. 491-499, 2006.
VONARX, E. J. et al. Characterization of insecticidal peptides from venom of australian funnel-web spiders. J. Venom. Anim. Toxins incl. Trop. Dis, v. 12, n.2, p. 215-233, 2006.
WHO-World Health Organization. Protocolo de evaluación de efeito insecticida sobre triatomminos. Acta Toxicológica Argentina, v. 2, p. 29-32, 1994.
YANG, Q. et al. Angel of human health: current research updates in toad medicine. Am J Transl Res. v. 7, n.1, p. 1-14, 2015.
ZANETTI, G.; DUREGOTTI, E.; LOCATELLI, C. A.; GIAMPRETI, A.; LONATI, D.; ROSSETTO, O.; PIRAZZINI, M. Science reports, v. 8, p. 9818, 2018.
ZHANG, P. et al. Quality Evaluation of Traditional Chinese Drug Toad Venom from Different Origins through a Simultaneous Determination of Bufogenins and Indole Alkaloids by HPLC. Chemical & Pharmaceutical Bulletin, v. 53, n.12, p. 1582-1586, 2005.
ZHANG, S. et al. Bee venom therapy: potential mechanisms and therapeutic applications. Toxicon, v. 148, n. 15, p. 64-73, 2018.
ZHANG, Y. Why do we study animal toxins? Zoological research, v. 38, n. 5, p. 183-222, 2015.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Health & Diversity Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Este obra está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional.