INFLUENCIA DE LOS GROUND CONTROL POINTS (GCPS) EN LA PRECISIÓN DE PRODUCTOS CARTOGRÁFICOS GENERADOS POR VEHÍCULOS AÉREOS NO TRIPULADOS (VANTS) EN UNA ZONA DE VARIACIÓN ALTIMÉTRICA
Palabras clave:
GCPs, pontos de controle, RMSE, VANT, SfM-CMVSResumen
El procesamiento de imágenes obtenidas por Vehículos Aéreos no Tripulados (VANTs), con avances en la técnica Structure from Motion – Multi-View Stereo SfM-MVS, se ha popularizado en estudios en el área de Geociencias, teniendo diversas aplicaciones por su bajo costo, rapidez y practicidad del método. La practicidad significa que los usuarios menos experimentados utilizan el método y, a menudo, la precisión cartográfica queda en un segundo plano. La precisión y exactitud de los modelos obtenidos con vehículos aéreos no tripulados han sido objeto de estudios en los últimos años, pero todavía es necesario realizar estudios en profundidad sobre el mapeo de áreas escarpadas donde el rango de altitud puede interferir con la calidad del modelo. El objetivo de esta investigación fue analizar la variación del Error Medio Cuadrado (RMSE) según la influencia del número de Ground Control Points (GCP) y estimar un número ideal de puntos de control que deberían usarse para producir resultados precisos en un área de extracción de basalto al cielo abierto, en la forma de plataformas en el estado de Rio Grande do Sul, con una variación de elevación de aproximadamente 50 m. Con un número de 10 a 16 GCP, se observó una estabilización de los errores en el área de estudio, pero otros factores además del número de GCP demostraron ser importantes en la variación del error, como la distribución de puntos, la iluminación, la tasa de superposición de imágenes y la variación en escala debido a la altura de la foto.
Citas
AGISOFT. Agisoft Metashape User Manual - Professional Edition, Version 2.0. 2023.
AGÜERA-VEGA, Francisco; RAMÍREZ, Fernando Carvajal; CARRICONDO, Patricio Martínez. Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle. Measurement, v. 98, p. 221-227, 2017. https://doi.org/10.1016/j.measurement.2016.12.002
ANDERS, N.; SMITH, M.; SUOMALAINEN, J.; Impact of flight altitude and cover orientation on Digital Surface Model (DSM) accuracy for flood damage assessment in Murcia (Spain) using a fixed-wing UAV. Earth Science Informatics, v. 13, n. 2, p. 391–404, 2020.
BOLKAS, Dimitrios. Assessment of GCP number and separation distance for small UAS surveys with and without GNSS-PPK positioning. Journal of Surveying Engineering, v. 145, n. 3, p. 04019007, 2019.https://doi.org/10.1061/(ASCE)SU.1943-5428.0000283
CARRERA-HERNÁNDEZ, Jaime Jesús et al. A low cost technique for development of ultra-high resolution topography: application to a dry maar's bottom. Revista mexicana de ciencias geológicas, v. 33, n. 1, p. 122-133, 2016.
CARRICONDO, Patricio Martínez et al. Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. International journal of applied earth observation and geoinformation, v. 72, p. 1-10, 2018. https://doi.org/10.1016/j.jag.2018.05.015
COOK, Kristen L. An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology, v. 278, p. 195–208, 2017. https://doi.org/10.1016/j.geomorph.2016.11.009
ELTNER, Anette; SOFIA, Giulia. Structure from motion photogrammetric technique. Developments in Earth surface processes. Elsevier, v. 23, p. 1-24, 2020. https://doi.org/10.1016/B978-0-444-64177-9.00001-1
GABRLIK, Petr et al.; COUR-HARBO, A. LA; KALVODOVA, P.; ZALUD, L.; JANATA, P. Calibration and accuracy assessment in a direct georeferencing system for UAS photogrammetry. International Journal of Remote Sensing, v. 39, n. 15–16, p. 4931–4959, 2018. https://doi.org/10.1080/01431161.2018.1434331
GARRETT, Bradley; ANDERSON, Karen. Drone methodologies: Taking flight in human and physical geography. Transactions of the Institute of British Geographers, v. 43, n. 3, p. 341–359, 2018. https://doi.org/10.1111/tran.12232.
GLENDELL, Miriam et al. Testing the utility of structure-from-motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion. Earth Surface Processes and Landforms, v. 42, n. 12, p. 1860–1871, 2017. https://doi.org/10.1002/esp.4142.
GONÇALVES, Gil et al. 3D reconstruction of coastal cliffs from fixed-wing and multi-rotor uas: Impact of sfm-mvs processing parameters, image redundancy and acquisition geometry. Remote Sensing, v. 13, n. 6, p. 1222, 2021. https://doi.org/10.3390/rs13061222
GONCALVES, José A.; HENRIQUES, Renato. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS journal of Photogrammetry and Remote Sensing, v. 104, p. 101-111, 2015. https://doi.org/10.1016/j.isprsjprs.2015.02.009
GONG, Chuangang et al. Analysis of the Development of an Erosion Gully in an Open-Pit Coal Mine Dump During a Winter Freeze-Thaw Cycle by Using Low-Cost UAVs. Remote Sensing, v. 11, n. 11, p. 1356, 2019. https://doi.org/10.3390/rs11111356.
JAMES, Michael R. et al. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology, v. 280, p. 51–66, 2017. https://doi.org/10.1016/j.geomorph.2016.11.021.
LIU, Kai et al. Detection of Catchment-Scale Gully-Affected Areas Using Unmanned Aerial Vehicle (UAV) on the Chinese Loess Plateau. ISPRS International Journal of Geo-Information, v. 5, n. 12, p. 238, 2016. https://doi.org/10.3390/ijgi5120238.
MEINEN, Benjamin U.; ROBINSON, Derek T. Mapping erosion and deposition in an agricultural landscape: Optimization of UAV image acquisition schemes for SfM-MVS. Remote Sensing of Environment, v. 239, p. 111666, 2020. https://doi.org/10.1016/j.rse.2020.111666
NOTA, Eise Wiebe; NIJLAND, W.; DE HAAS, Tjalling. Improving UAV-SfM time-series accuracy by co-alignment and contributions of ground control or RTK positioning. International Journal of Applied Earth Observation and Geoinformation, v. 109, p. 102772, 2022. https://doi.org/10.1016/j.jag.2022.102772
RADEMANN, Lucas Krein; TRENTIN, Romario; ROBAINA, Luis Eduardo de Souza. Caracterização e análise de erosão por voçorocamento no sul do Brasil com o auxílio de Veículo Aéreo Não Tripulado. Mercator (Fortaleza), v. 21, 2022. https://doi.org/10.4215/rm2022.e21022
REN, He et al. An Improved Ground Control Point Configuration for Digital Surface Model Construction in a Coal Waste Dump Using an Unmanned Aerial Vehicle System. Remote Sensing, v. 12, n. 10, p. 1623, 2020. https://doi.org/10.3390/rs12101623
SANZ-ABLANEDO, Enoc et al. Accuracy of Unmanned Aerial Vehicle (UAV) and SfM Photogrammetry Survey as a Function of the Number and Location of Ground Control Points Used. Remote Sensing, v. 10, n. 10, p. 1606, 2018. https://doi.org/10.3390/rs10101606
STÖCKER, Claudia; ELTNER, Anette; KARRASCH, Pierre. Measuring gullies by synergetic application of UAV and close-range photogrammetry - A case study from Andalusia, Spain. Catena, v. 132, p. 1–11, 2015. https://doi.org/10.1016/j.catena.2015.04.004.
TURNER, Darren; LUCIEER, Arko; WALLACE, Luke. Direct georeferencing of ultrahigh-resolution UAV imagery. IEEE Transactions on Geoscience and Remote Sensing, v. 52, n. 5, p. 2738-2745, 2013. https://doi.org/10.1109/TGRS.2013.2265295.
TURNER, Darren; LUCIEER, Arko; WATSON, Cristopher. An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds. Remote Sensing, v. 4, n. 5, p. 1392–1410, 2012. https://doi.org/10.3390/rs4051392
UYSAL, Murat; TOPRAK, Ahmet S.; POLAT, Nizar. DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill. Measurement, v. 73, p. 539–543, 2015. https://doi.org/10.1016/j.measurement.2015.06.010.
VERDONK, S. C. Gully volume estimates using UAV Photometry. Dissertação de Mestrado, University of Utrecht, p. 80, 2015. https://studenttheses.uu.nl/handle/20.500.12932/34266
WESTOBY, Matthew J. et al. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, v. 179, p. 300–314, 2012. https://doi.org/10.1016/j.geomorph.2012.08.021
WILDNER, W. et al. Geologia e recursos minerais do estado do Rio Grande do Sul: escala 1:750.000. Porto Alegre: CPRM, 2008.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 REVISTA GEOGRÁFICA ACADÊMICA
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
A RGA é detentora dos direitos autorais publicados, não sendo permitido que o mesmo conteúdo seja publicado em demais periódicos.