RELATIONSHIP BETWEEN FIRE AND VEGETATION DYNAMICS IN CHAPADA DAS MESAS NATIONAL PARK, MARANHÃO - BRAZIL: AN APPROACH FROM PHENOLOGICAL METRICS DERIVED FROM REMOTE SENSING
Keywords:
Cerrado, Fire, NDVI, TIMESAT, Vegetative phenologyAbstract
The Cerrado is one of the main Brazilian biomes, considered as one of the most important biodiversity hotspots on the planet. Although fire plays a very important role in the functioning of this ecosystem, the recent state of strong anthropic changes in natural fire regimes are a significant threat to its conservation. In this context, this article aims to monitor the historical time series of the NDVI between the years 2000 and 2018 in the region of the Chapada das Mesas National Park (PNCM). Thus, first, a classification of the Cerrado plant physiognomies in the area was generated based on a mosaic of high spatial resolution images (Dove PlanetScope), using the random forest algorithm, while the fire history (between 2000-2018) of the area was obtained based on time series dataset of Landsat images. In a second time, smoothed NDVI time series images from MODIS sensor were processed with TIMESAT software, where metrics related to the phenological cycle of vegetation (beginning, peak and end of vegetation growth cycle, its duration and maximal productivity) were derived. We found that the increase or decrease in fire occurrence promotes a change in the phenological cycles of the vegetation, changing the beginning and end dates of the vegetation growing cycle, as well as the maximum levels of NDVI. Our results highlight the potential for using remote sensor data to use the vegetative phenology as an indicator to assess the effects of fire on vegetation dynamics, generating information that can contribute to a better management and monitoring of fires in the PNCM, since this is one of the greatest riches ecosystems of the cerrado biome in the State of Maranhão.
References
ALVARADO, S. T.; FORNAZARI, T.; CÓSTOLA, A.; MORELLATO, L. P. C.; SILVA, T. S. F. Drivers of fire occurrence in a mountainous Brazilian cerrado savanna: Tracking long-term fire regimes using remote sensing. Ecological Indicators, v.78, p.270–281, 2017. DOI: 10.1016/j.ecolind.2017.02.037.
ALVES, D. B.; ALVARADO, S. T. Variação espaço-temporal da ocorrência do fogo nos biomas brasileiros com base na análise de produtos de sensoriamento remoto. Geografia, v. 44, n. 2, p. 321-345, 2019. DOI: 10.5016/geografia.v44i2.15119.
ALMEIDA, C. Relatório de Atividades Projeto Cerrado Jalapão no Parque Nacional da Chapada das Mesas em 2014. Carolina, 2015. p.
ARAÚJO, M.L.S.D.; SANO, E.E.; BOLFE, É.L.; SANTOS, J.R.N.; DOS SANTOS, J.S.; SILVA, F.B. Spatiotemporal dynamics of soybean crop in the Matopiba region, Brazil (1990–2015). Land Use Policy, v.80, p.57–67, 2019. DOI: 10.1016/j.landusepol.2018.09.040.
BUNTING, P.; CLEWLEY, D.; LUCAS, R. M.; GILLINGHAM, S. The remote sensing and GIS software library (Rsgislib). Computers & Geosciences, v. 62, p. 216–226, jan. 2014. DOI: 10.1016/j.cageo.2013.08.007.
CLEWLEY, D.; BUNTING, P.; SHEPHERD, J.; GILLINGHAM, S.; FLOOD, N.; DYMOND, J.; LUCAS, R.; ARMSTON, J.; MOGHADDAM, M. A Python-Based Open Source System for Geographic Object-Based Image Analysis (GEOBIA) Utilizing Raster Attribute Tables. Remote Sensing, v.6, p.6111–6135, 2014. DOI: 10.3390/rs6076111.
CONGALTON, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, v.37, p.35–46, 1991. DOI: 10.1016/0034-4257(91)90048-B.
DE CARVALHO, I.S. Análise espaço-temporal do regime de queimadas no Parque Nacional da Chapada das Mesas, Maranhão. 76 f. Dissertação (Mestrado) – Curso de Pós-Graduação em Agricultura e Ambiente, Universidade Estadual do Maranhão, 2019.
DE CARVALHO, I. S.; ALVARADO, S. T.; FERRAZ, T. M. Burned Area Chapada das Mesas National Park. (Versão 01) [Data set]. Zenodo, 2023. DOI: https://doi.org/10.5281/zenodo.10289082.
DE CARVALHO, I.S.; ALVARADO, S.T.; SILVA, T.S.F.; CORDEIRO, C. L. O.; FIDELIS, A.; SARAIVA, R.V.C.; FIGUEIREDO, F.A.M.M.A.; SOUSA, J.R.P.; FERRAZ, T.M. How does the fire regime change after creating a protected area in the Brazilian Cerrado? Journal for Nature Conservation, v.71, p.126318, 2023. DOI: 10.1016/j.jnc.2022.126318.
DE CARVALHO, I.S.; FERRAZ, T.M.; SILVA, T.S.F.; ALVARADO, S.T. Classificação da vegetação do Parque Nacional da Chapada das Mesas, Maranhão, usando OBIA, Machine Learning e softwares livres. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 19. (SBSR), 2019, Santos. Anais... São José dos Campos: INPE, 2019. p. 2984-2987.
DROBYSHEV, I.; GOEBEL, P.C.; HIX, D.M.; CORACE, R.G.; SEMKO-DUNCAN, M.E. Interactions among forest composition, structure, fuel loadings and fire history: A case study of red pine-dominated forests of Seney National Wildlife Refuge, Upper Michigan. Forest Ecology and Management, v.256, p.1723–1733, 2008. DOI: https://doi.org/10.1016/j.foreco.2008.05.017.
DURIGAN, G. Zero-fire: Not possible nor desirable in the Cerrado of Brazil. Flora, v.268, p.151612, 2020. DOI: https://doi.org/10.1016/j.flora.2020.151612.
DURIGAN, G.; RATTER, J. A. The need for a consistent fire policy for Cerrado conservation. Journal of Applied Ecology, v.53, p.11–15, 2016. DOI: https://doi.org/10.1111/1365-2664.12559.
DURIGAN, G.; SIQUEIRA, M. F. D.; FRANCO, G. A. D. C. Threats to the Cerrado remnants of the state of São Paulo, Brazil. Scientia Agricola, v.64, p.355–363, 2007. DOI: https://doi.org/10.1590/S0103-90162007000400006.
DWYER, E.; PINNOCK, S.; GREGOIRE, J. M.; PEREIRA, J. M. C. Global spatial and temporal distribution of vegetation fire as determined from satellite observations. International Journal of Remote Sensing, v.21, p.1289–1302, 2000. DOI: https://doi.org/10.1080/014311600210182.
EKLUNDH, L.; JÖNSSON, P. TIMESAT for processing time-series data from satellite sensors for land surface monitoring. In: Multitemporal Remote Sensing; Springer: Berlin, Heidelberg, Germany, p. 177–194. 2016.
FERRAZ, T. M.; SARAIVA, R. V. C.; LEONEL, L. V.; REIS, F. F. D.; FIGUEIREDO, F. A. M. M. A.; REIS, F. D. O.; SOUSA, J. R. P. D.; MUNIZ, F. H. Cerrado physiognomies in Chapada das Mesas National Park (Maranhão, Brazil) revealed by patterns of floristic similarity and relationships in a transition zone. Anais da Academia Brasileira de Ciências, v.92, p.e20181109, 2020. DOI: https://doi.org/10.1590/0001-3765202020181109.
FIDELIS, A.; ALVARADO, S.; BARRADAS, A.; PIVELLO, V. R. The Year 2017: Megafires and Management in the Cerrado. Fire, v.1, p.49, 2018. DOI: https://doi.org/10.3390/fire1030049.
FIDELIS, A.; PIVELLO, V. R. Deve-se usar o fogo como instrumento de manejo no Cerrado e Campos Sulinos?. Biodiversidade Brasileira, v.1, n.2, p.12-25, 2011. DOI:https://doi.org/10.37002/biodiversidadebrasileira.v1i2.102.
GIROLAMO NETO, C. D.; FONSECA, L. M. G.; VALERIANO, D. M.; NEVES, A. K.; KORTING, T. S. Desafios na classificação automática de fitofisionomias do Cerrado brasileiro com base em mapas de referência na escala 1:250.000. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 18. (SBSR), 2017, Santos. Anais... São José dos Campos: INPE, 2017. p. 6647-6654. Disponível em: http://urlib.net/ibi/8JMKD3MGP6W34M/3PSMDAS.
ICMBio, Instituto Chico Mendes de Conservação da Biodiversidade. Plano de manejo do Parque Nacional da Chapada das Mesas. 36p, 2019.
JÖNSSON, P.; EKLUNDH, L. TIMESAT—a program for analyzing time-series of satellite sensor data. Computers & Geosciences, v.30, p.833–845, 2004. DOI: https://doi.org/10.1016/j.cageo.2004.05.006.
KIM, K.E. Adaptive majority filtering for contextual classification of remote sensing data. International Journal of Remote Sensing, v.17, p.1083–1087, 1996. DOI: https://doi.org/10.1080/01431169608949070.
KLINK, C.A.; MACHADO, R.B. Conservation of the Brazilian Cerrado. Conservation Biology, v.19, p.707–713, 2005. DOI: https://doi.org/10.1111/j.1523-1739.2005.00702.x.
KLINK, C.A.; MOREIRA, A. G. Past and current human occupation, and land use. In: The cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, 2002. p. 69-88.
LANDIS, J.R.; KOCH, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics, v.33, p.159, 1977. DOI: https://doi.org/10.2307/2529310.
LIMA, L.P., TCHAICKA, L., AVELAR, J.J.C., CUNHA, A.N.C. Plano Operativo de Prevenção e Combate aos Incêndios Florestais do Parque Nacional da Chapada das Mesas. Ministério do Meio Ambiente-MMA. 18p. 2007.
MACHADO, N. G.; SILVA, F. C. P. da; BIUDES, M. S. Efeito das condições meteorológicas sobre o risco de incêndio e o número de queimadas urbanas e focos de calor em Cuiabá-MT, Brasil. Ciência e Natura, v. 36, n. 3, p. 459–469, 2014. DOI: https://doi.org/10.5902/2179460X11892.
MARQUES, A.R.; AMORIM, M.C.C. Saberes geográficos integrados aos estudos territoriais sob a ótica da implantação do Parque Nacional da Chapada das Mesas, sertão de Carolina/MA. Geografia em questão, v. 7, n. 2, p. 100-117, 2014.
MARTINS, F.P.; SALGADO, A.A.R.; BARRETO, H.N. Morfogênese da Chapada das Mesas (Maranhão-Tocantins): paisagem cárstica e poligenética. Revista Brasileira de Geomorfologia, v.18, 2017. DOI: https://doi.org/10.20502/rbg.v18i3.1180.
MATAVELI, G.A.V.; SILVA, M.E.S.; PEREIRA, G.; CARDOZO, F. DA S.; KAWAKUBO, F. S.; BERTANI, G.; COSTA, J.C.; RAMOS, R. DE C.; DA SILVA, V. V. Satellite observations for describing fire patterns and climate-related fire drivers in the Brazilian savannas. Natural Hazards and Earth System Sciences, v.18, p.125–144, 2018. DOI: https://doi.org/10.5194/nhess-18-125-2018.
MORAES, R.C.; LIMA, L.P. Utilização de SIG como ferramenta na gestão do Parque Nacional Chapada das Mesas (Carolina / MA). In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 13. (SBSR)., 2007, Florianópolis. Anais... São José dos Campos: INPE, 2007. p. 4057-4064. Disponível em: http://urlib.net/ibi/dpi.inpe.br/sbsr@80/2006/11.14.19.37.58.
MORELLATO, L.P.C.; CAMARGO, M.G.G.; GRESSLER, E. A Review of Plant Phenology in South and Central America. In: SCHWARTZ, M.D. (Ed.). Phenology: An Integrative Environmental Science. Dordrecht: Springer Netherlands, 2013. p.91–113. DOI: https://doi.org/10.1007/978-94-007-6925-0_6.
MYERS, N.; MITTERMEIER, R.A.; MITTERMEIER, C.G.; DA FONSECA, G.A.B.; KENT, J. Biodiversity hotspots for conservation priorities. Nature, v.403, p.853–858, 2000. DOI: https://doi.org/10.1038/35002501.
NEPSTAD, D.C.; MOREIRA, A.G.; ALENCAR, A.A. Flames in the Rainforest: origins, impacts and alternatives to amazonian fire. In: Pilot Program for the Conservation of the Brazilian Rainforest, The World Bank, Brasília, 1999.
NUNES, J.F.; ROIG, H.L. Análise e mapeamento do uso e ocupação do solo da bacia do Alto do Descoberto, DF/GO, por meio de classificação automática baseada em regras e lógica nebulosa, Revista Árvore, v.39, n.1, pp.25-36, 2015. DOI: http://dx.doi.org/10.1590/0100-67622015000100003.
OLIVEIRA-FILHO, A.T., RATTER, J.A. Vegetation physiognomies and woody flora of the Cerrado Biome. In: The Cerrados of Brazil: ecology and natural history of a neotropical savanna, OLIVEIRA PS, MARQUIS RJ (ORG.). Columbia University Press, New York, p. 91–120, 2002. DOI: https://doi.org/10.7312/oliv12042-005.
PIVELLO, V.R. The Use of Fire in the Cerrado and Amazonian Rainforests of Brazil: Past and Present. Fire Ecology, v.7, p.24–39, 2011. DOI: https://doi.org/10.4996/fireecology.0701024.
PONTIUS JR, R.G.; MILLONES, M. Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, v.32, p.4407–4429, 2011. DOI: https://doi.org/10.1080/01431161.2011.552923.
RAMOS-NETO, M.B.; PIVELLO, V.R. Lightning Fires in a Brazilian Savanna National Park: Rethinking Management Strategies. Environmental Management, v.26, p.675–684, 2000. DOI: https://doi.org/10.1007/s002670010124.
RIBEIRO, J.F.; WALTER, B.M.T. As principais fitofisionomias do bioma Cerrado. In: SANO, S.M.; ALMEIDA, S. P. De; RIBEIRO, J. F.; EMBRAPA CERRADOS (Org.), Cerrado: ecologia e flora. Brasília, DF: Embrapa Informação Tecnológica, 2008.
R CORE TEAM, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Disponível em: http://www.R-project.org, 2018.
ROUSE, J.W.; HAAS, R.H.; SCHELL, J.A.; DEERING, D.W. Monitoring vegetation systems in the great plains with ERTS. In: Third ERTS Symposium, Proceedings, NASA SP-351, NASA, Washignton, DC, v. 1, p. 309-317, 1974.
SANO, E.E.; PONZONI, F.J.; MENESES. P.R.; BAPTISTA, G.M. De M.; TONIOL, A.C.; GALVÃO, L.S.; ROCHA, W.J.S.F. Reflectância da vegetação. In: MENESES, P.R., ALMEIDA, T. De, BAPTISTA, G.M. De M., (Org.), Reflectância dos materiais terrestres: análise e interpretação. Oficina de Textos, São Paulo – SP, 2019.
SANO, E.E.; ROSA, R.; BRITO, J.L.S.; FERREIRA, L.G. Land cover mapping of the tropical savanna region in Brazil. Environmental Monitoring and Assessment, v.166, p.113–124, 2010. DOI: https://doi.org/10.1007/s10661-009-0988-4.
SCHMIDT, I.B.; MOURA, L.C.; FERREIRA, M.C.; ELOY, L.; SAMPAIO, A.B.; DIAS, P.A.; BERLINCK, C.N. Fire management in the Brazilian savanna: First steps and the way forward. Journal of Applied Ecology, v.55, p.2094–2101, 2018. DOI: https://doi.org/10.1111/1365-2664.13118.
SCHUMACHER, V.; SETZER, A. Relação entre queimadas e relâmpagos no Parque Nacional das Emas. In: SETZER, A.W., FERREIRA, N.J., (Org.), Queimadas e Incêndios Florestais: mediante monitoramento orbital. Oficina de Textos, São Paulo, 2021.
SHEPHERD, J.; BUNTING, P.; DYMOND, J. Operational Large-Scale Segmentation of Imagery Based on Iterative Elimination. Remote Sensing, v. 11, n. 6, p. 658, 18 mar. 2019. DOI: https://doi.org/10.3390/rs11060658.
SILVA, J.A. DA. Direito ambiental constitucional. 11ªEd., São Paulo, SP: Malheiros Editores, 2019. 374p.
SILVA, P.S.; NOGUEIRA, J.; RODRIGUES, J.A.; SANTOS, F.L.M.; PEREIRA, J.M.C.; DACAMARA, C.C.; DALDEGAN, G.A.; PEREIRA, A.A.; PERES, L.F.; SCHMIDT, I.B.; LIBONATI, R. Putting fire on the map of Brazilian savanna ecoregions. Journal of Environmental Management, v.296, p.113098, 2021. DOI: 10.1016/j.jenvman.2021.113098.
STRASSBURG, B.B.N.; BROOKS, T.; FELTRAN-BARBIERI, R.; IRIBARREM, A.; CROUZEILLES, R.; LOYOLA, R.; LATAWIEC, A.E.; OLIVEIRA FILHO, F.J.B.; SCARAMUZZA, C.A.D.M.; SCARANO, F.R.; SOARES-FILHO, B.; BALMFORD, A. Moment of truth for the Cerrado hotspot. Nature Ecology & Evolution, v.1, p.0099, 2017. DOI: https://doi.org/10.1038/s41559-017-0099.
TADONO, T.; NAGAI, H.; ISHIDA, H.; ODA, F.; NAITO, S.; MINAKAWA, K. E IWAMOTO, H. Generation of the 30 m mesh Global Digital Surface Model by ALOS PRISM. In: The Int. Arch. Photogram. Remote Sens. Spatial Inf. Sciences, v. XLI-B4, p.157-162, 2016. DOI: https://doi.org/10.5194/isprsarchives-XLI-B4-157-2016.
TAN, B.; MORISETTE, J.T.; WOLFE, R.E.; GAO, F.; EDERER, G.A.; NIGHTINGALE, J.; PEDELTY, J.A. An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics From MODIS Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v.4, p.361–371, 2011. DOI: https://doi.org/10.1109/JSTARS.2010.2075916.
UHL, C.; KAUFFMAN, J.B. Deforestation, Fire Susceptibility, and Potential Tree Responses to Fire in the Eastern Amazon. Ecology, v.71, p.437–449, 1990. DOI: https://doi.org/10.2307/1940299.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 REVISTA GEOGRÁFICA ACADÊMICA
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
A RGA é detentora dos direitos autorais publicados, não sendo permitido que o mesmo conteúdo seja publicado em demais periódicos.