INFLUÊNCIA DOS GCPS NA ACURÁCIA DE PRODUTOS CARTOGRÁFICOS A PARTIR DE VANT EM ÁREA DE GRANDE VARIAÇÃO ALTIMÉTRICA
Palavras-chave:
GCPs, pontos de controle, RMSE, VANT, SfM-CMVSResumo
O processamento de imagens obtidas por Veículos Aéreos não Tripulados (VANTs), com o avanço na técnica Structure from Motion – Multi-View Stereo (SfM-MVS), vem se popularizando nos estudos da área da Geociências, tendo diversas aplicações pelo seu baixo custo, rapidez e praticidade do método. A praticidade faz que usuários menos experientes utilizem o método e, por muitas vezes, a precisão cartográfica é negligenciada. A precisão e acurácia dos modelos obtidos com VANTs têm sido alvos de pesquisas recentes, mas carecendo ainda de estudos aprofundados no mapeamento de áreas escarpadas onde a amplitude altimétrica pode interferir na qualidade do modelo. A presente pesquisa teve por objetivo analisar a variação do erro médio quadrático (RMSE) de acordo com a influência do número de Ground Control Points (GCPs) e estimar uma quantidade ideal de pontos de controle que devem ser utilizados para produzir resultados acurados em uma área de extração de basalto a céu aberto em forma de patamares no estado do Rio Grande do Sul com uma variação altimétrica de aproximadamente 50m. Com um número de 10 a 16 GCPs foi observada uma estabilização do erros na área de estudo, mas outros fatores além do número dos GCPs se mostraram importantes na variação do erro, como distribuição dos pontos, iluminação, taxa de sobreposição das imagens e variação da escala devido à altura da foto.
Referências
AGISOFT. Agisoft Metashape User Manual - Professional Edition, Version 2.0. 2023.
AGÜERA-VEGA, Francisco; RAMÍREZ, Fernando Carvajal; CARRICONDO, Patricio Martínez. Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle. Measurement, v. 98, p. 221-227, 2017. https://doi.org/10.1016/j.measurement.2016.12.002
ANDERS, N.; SMITH, M.; SUOMALAINEN, J.; Impact of flight altitude and cover orientation on Digital Surface Model (DSM) accuracy for flood damage assessment in Murcia (Spain) using a fixed-wing UAV. Earth Science Informatics, v. 13, n. 2, p. 391–404, 2020.
BOLKAS, Dimitrios. Assessment of GCP number and separation distance for small UAS surveys with and without GNSS-PPK positioning. Journal of Surveying Engineering, v. 145, n. 3, p. 04019007, 2019.https://doi.org/10.1061/(ASCE)SU.1943-5428.0000283
CARRERA-HERNÁNDEZ, Jaime Jesús et al. A low cost technique for development of ultra-high resolution topography: application to a dry maar's bottom. Revista mexicana de ciencias geológicas, v. 33, n. 1, p. 122-133, 2016.
CARRICONDO, Patricio Martínez et al. Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. International journal of applied earth observation and geoinformation, v. 72, p. 1-10, 2018. https://doi.org/10.1016/j.jag.2018.05.015
COOK, Kristen L. An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology, v. 278, p. 195–208, 2017. https://doi.org/10.1016/j.geomorph.2016.11.009
ELTNER, Anette; SOFIA, Giulia. Structure from motion photogrammetric technique. Developments in Earth surface processes. Elsevier, v. 23, p. 1-24, 2020. https://doi.org/10.1016/B978-0-444-64177-9.00001-1
GABRLIK, Petr et al.; COUR-HARBO, A. LA; KALVODOVA, P.; ZALUD, L.; JANATA, P. Calibration and accuracy assessment in a direct georeferencing system for UAS photogrammetry. International Journal of Remote Sensing, v. 39, n. 15–16, p. 4931–4959, 2018. https://doi.org/10.1080/01431161.2018.1434331
GARRETT, Bradley; ANDERSON, Karen. Drone methodologies: Taking flight in human and physical geography. Transactions of the Institute of British Geographers, v. 43, n. 3, p. 341–359, 2018. https://doi.org/10.1111/tran.12232.
GLENDELL, Miriam et al. Testing the utility of structure-from-motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion. Earth Surface Processes and Landforms, v. 42, n. 12, p. 1860–1871, 2017. https://doi.org/10.1002/esp.4142.
GONÇALVES, Gil et al. 3D reconstruction of coastal cliffs from fixed-wing and multi-rotor uas: Impact of sfm-mvs processing parameters, image redundancy and acquisition geometry. Remote Sensing, v. 13, n. 6, p. 1222, 2021. https://doi.org/10.3390/rs13061222
GONCALVES, José A.; HENRIQUES, Renato. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS journal of Photogrammetry and Remote Sensing, v. 104, p. 101-111, 2015. https://doi.org/10.1016/j.isprsjprs.2015.02.009
GONG, Chuangang et al. Analysis of the Development of an Erosion Gully in an Open-Pit Coal Mine Dump During a Winter Freeze-Thaw Cycle by Using Low-Cost UAVs. Remote Sensing, v. 11, n. 11, p. 1356, 2019. https://doi.org/10.3390/rs11111356.
JAMES, Michael R. et al. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology, v. 280, p. 51–66, 2017. https://doi.org/10.1016/j.geomorph.2016.11.021.
LIU, Kai et al. Detection of Catchment-Scale Gully-Affected Areas Using Unmanned Aerial Vehicle (UAV) on the Chinese Loess Plateau. ISPRS International Journal of Geo-Information, v. 5, n. 12, p. 238, 2016. https://doi.org/10.3390/ijgi5120238.
MEINEN, Benjamin U.; ROBINSON, Derek T. Mapping erosion and deposition in an agricultural landscape: Optimization of UAV image acquisition schemes for SfM-MVS. Remote Sensing of Environment, v. 239, p. 111666, 2020. https://doi.org/10.1016/j.rse.2020.111666
NOTA, Eise Wiebe; NIJLAND, W.; DE HAAS, Tjalling. Improving UAV-SfM time-series accuracy by co-alignment and contributions of ground control or RTK positioning. International Journal of Applied Earth Observation and Geoinformation, v. 109, p. 102772, 2022. https://doi.org/10.1016/j.jag.2022.102772
RADEMANN, Lucas Krein; TRENTIN, Romario; ROBAINA, Luis Eduardo de Souza. Caracterização e análise de erosão por voçorocamento no sul do Brasil com o auxílio de Veículo Aéreo Não Tripulado. Mercator (Fortaleza), v. 21, 2022. https://doi.org/10.4215/rm2022.e21022
REN, He et al. An Improved Ground Control Point Configuration for Digital Surface Model Construction in a Coal Waste Dump Using an Unmanned Aerial Vehicle System. Remote Sensing, v. 12, n. 10, p. 1623, 2020. https://doi.org/10.3390/rs12101623
SANZ-ABLANEDO, Enoc et al. Accuracy of Unmanned Aerial Vehicle (UAV) and SfM Photogrammetry Survey as a Function of the Number and Location of Ground Control Points Used. Remote Sensing, v. 10, n. 10, p. 1606, 2018. https://doi.org/10.3390/rs10101606
STÖCKER, Claudia; ELTNER, Anette; KARRASCH, Pierre. Measuring gullies by synergetic application of UAV and close-range photogrammetry - A case study from Andalusia, Spain. Catena, v. 132, p. 1–11, 2015. https://doi.org/10.1016/j.catena.2015.04.004.
TURNER, Darren; LUCIEER, Arko; WALLACE, Luke. Direct georeferencing of ultrahigh-resolution UAV imagery. IEEE Transactions on Geoscience and Remote Sensing, v. 52, n. 5, p. 2738-2745, 2013. https://doi.org/10.1109/TGRS.2013.2265295.
TURNER, Darren; LUCIEER, Arko; WATSON, Cristopher. An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds. Remote Sensing, v. 4, n. 5, p. 1392–1410, 2012. https://doi.org/10.3390/rs4051392
UYSAL, Murat; TOPRAK, Ahmet S.; POLAT, Nizar. DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill. Measurement, v. 73, p. 539–543, 2015. https://doi.org/10.1016/j.measurement.2015.06.010.
VERDONK, S. C. Gully volume estimates using UAV Photometry. Dissertação de Mestrado, University of Utrecht, p. 80, 2015. https://studenttheses.uu.nl/handle/20.500.12932/34266
WESTOBY, Matthew J. et al. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, v. 179, p. 300–314, 2012. https://doi.org/10.1016/j.geomorph.2012.08.021
WILDNER, W. et al. Geologia e recursos minerais do estado do Rio Grande do Sul: escala 1:750.000. Porto Alegre: CPRM, 2008.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 REVISTA GEOGRÁFICA ACADÊMICA
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
A RGA é detentora dos direitos autorais publicados, não sendo permitido que o mesmo conteúdo seja publicado em demais periódicos.