Network play important role in chronic diseases: a literature review

Authors

  • Bruna C.S.T. Correia Centro Universitário Barão de Mauá, Ribeirão Preto, Brasil.
  • Pedro H.V. Camargo Centro Universitário Barão de Mauá, Ribeirão Preto, Brasil.
  • Rafaela T. Mendes Centro Universitário Barão de Mauá, Ribeirão Preto, Brasil.
  • Sofia C.P. Lima Centro Universitário Barão de Mauá, Ribeirão Preto, Brasil.
  • Cristiane Tefé-Silva Centro Universitário Barão de Mauá, Ribeirão Preto, Brasil.
  • Karina F. Zoccal Centro Universitário Barão de Mauá, Ribeirão Preto, Brasil.

DOI:

https://doi.org/10.18227/hd.v4i1.7524

Keywords:

Inflammatory diseases, neutrophils, NETs, type 1 diabetes mellitus, thrombosis, bronchial asthma, cystic fibrosis

Abstract

Introduction: Neutrophil extracellular traps (NETs) are the result of extrusion of various components by neutrophils, and act to eradicate the pathogens present, as well as providing mechanical barrier, thus preventing the spread of microorganisms. Chronic diseases have been found to have a significant influence on these NETs, which by specific mechanisms produce negative effects on pathogenesis. Methods: Bibliographic review using Google Scholar, Medline, Center for Biotechnology Information (PubMed) and Scientific Electronic Library Online (SciELO) as databases. The search was performed in articles published from 2000 to 2019, in Portuguese and/or English languages. Development: It was evidenced that each disease in question is aggravated by NETs in a different way, either by inflammatory exacerbation or physical barrier, and the participation of pathogens in the neutrophil stimulation inducing process can be considered. Conclusion: Understanding the process of formation of NETs, ie, NETose, may help future findings that could contribute to mitigate the injury caused by the neutrophil mechanism, which involves multiple cytokines, granules and DNA molecules.

Downloads

Download data is not yet available.

References

AMERICAN DIABETES ASSOCIATION. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care, v. 33, n. 1, p.62-69, 2009. Andrade, F.F.D.; Penaforte, C.L.; Veloso, C.A.

Mecanismos Moleculares De Formação Das Armadilhas Extracelulares Dos Neutrófilos E Seu Papel Na Imunidade Inata. Arquivos de Ciências da Saúde, v. 23, n. 2, p.03-4, 18 jul. 2016.

Faculdade de Medicina de Sao Jose do Rio Preto - FAMERP. Brasil. Ministério da Saúde. Biblioteca virtual em saúde. Fibrose Cística, 2018. Disponível em: <http://bvsms.saude.gov.br/dicas-em-saude/2675-fibrose-cistica>. Acesso em: 17 abr. 2019.

Brasil. Ministério Da Saúde. Fibrose Cística (FC). 2017. Disponível em: <http://www.saude.gov.br/acoes-eprogramas/programa-nacional-da-triagem-neonatal/fibrose-cistica-fc>. Acesso em: 28 jun. 2019.

Borissoff, J. I.; Cate, H.T. from neutrophil extracelular traps release to thrombosis: an overshooting hostdefense mechanism? Journal Of Thrombosis And Haemostasis, v. 9, n. 9, p.1791-1794, 2011.

Borregaard, N. Neutrophils, from Marrow to Microbes. Immunity, v. 33, p.657-670, 2010.

Branzk, N.; Papayannopoulos, V. Molecular mechanisms regulating NETosis in infection and disease. Seminars In Immunopathology, v. 35, p.513-530, 2013.

Bredemeier, J. A Experiência de Crescer com Fibrose Cística: Investigações sobre Qualidade de Vida. 2005. 151 f. Dissertação (Mestrado) - Curso de Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2005.

Brill, A.; Fuchs, T.; Chauhan, A.K.; Yang, J.J.; De Meyer, S.F.; Köllnberger, M.; Wakefield, T.; Lämmle, B.; Massberg, S.; Wagner, D.D. Von willebrand factormediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood, v. 117, p. 1400–

, 2011.

Brinkmann, V. Neutrophil Extracellular Traps Kill Bacteria. Science, v. 303, p.1532-1535, 2004.

American Association for the Advancement of Science (AAAS). Cançado, J.Ed.D.; Penha, M.; Gupta, S.; Li, V.W.; Julian, G.S.; Moreira, E.S. Respira project: Humanistic and economic burden of asthma in Brazil. Journal of Asthma, v. 56, p. 244-251, 2018.

Cantin, A.M.; Hartl, D.; Konstan, M.W.; Chmiel, J.F. Inflammation in cystic fibrosis lung disease: Pathogenesis and therapy. Journal Of Cystic Fibrosis, v. 14, p.419-430, 2015.

Choi, Y.; Pham, L.D.; Lee D.-H.; Ban G.-Y.; Lee, J.- H.; Kim, S.-H.; Park, H.-S. Neutrophil Extracellular DNA Traps Induce Autoantigen Production by Airway Epithelial Cells. Mediators Of Inflammation, v. 2017, p.1-7, 2017.

Contran R.S. & Mitchel R.N. Distúrbios hemodinâmicos, trombose e choque. In: Cotran R.S., Kumar V. & Collins T. Robbins: Patologia Estrutural e Funcional, 6 ed. Guanabara Koogan, Rio de Janeiro, 2000.

Cullen, L.; Mcclean, S. Bacterial Adaptation during Chronic Respiratory Infections. Pathogens, [s.l.], v. 4, p.66-89, 2015.

Diana, J.; Simoni, Y.; Furio L.; Beaudoin L.; Agerberth B.; Barrat F.; Lehuen A. Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nature Medicine, v. 19, p.65-73, 2012.

Douda, D.; Grasemann, H.; Pace-Asciak, C.; Palaniyar, N. A Lipid Mediator Hepoxilin A3 Is a Natural Inducer of Neutrophil Extracellular Traps in Human Neutrophils. Mediators Of Inflammation, v. 2015, p.1-7, 2015.

Dubois, A.V.; Gauthier, A.; Bréa, D.; Varaigne, F.; Diot, P.; Gauthier, F.; Attucci S. Influence of DNA on the Activities and Inhibition of Neutrophil Serine Proteases in Cystic Fibrosis Sputum. American Journal Of Respiratory Cell And Molecular Biology, v. 47, p.80-86, 2012.

Eisele, N.A.; Anderson, D.M. Host Defense and the Airway Epithelium: Frontline Responses That Protect against Bacterial Invasion and Pneumonia. Journal Of Pathogens, v. 2011, p.1-16, 2011.

Floyd, M.; Winn, M.; Cullen, C.; Sil, P.; Chassaing, B.; Yoo, D.G.; Gewirtz, A.T.; Goldberg, J.B.; McCarter, L.L.; Rada, B. Swimming Motility Mediates the Formation of Neutrophil Extracellular Traps Induced by Flagellated Pseudomonas aeruginosa. Plos Pathogens, v. 12, p.1-32, 2016.

Franco, R.F. Overview of coagulation, anticoagulation and fibrinolysis. Medicina, Ribeirão Preto, 2001.

Fuchs, T.A.; Brill, A.; Wagner, D.D. Neutrophil extracellular trap (net) impact on deep vein thrombosis. Arteriosclerosis Thrombosis Vascular Biol, v. 32, p. 1777–1783, 2012.

Fuchs, T.A.; Brill, A.; Duerschmied, D.; Schatzberg, D.; Monestier, M.; et al. Extracellular dna traps promote thrombosis. Proceedings Of The National Academy Of Sciences, v. 107, p.15880-15885, 2010.

Gifford, A.M.; Chalmers, J.D. The role of neutrophils in cystic fibrosis. Current Opinion In Hematology, v. 21, p.16-22, 2014.

Gray, R.D.; Hardisty, G.; Regan, K.H.; Smith, M.; Robb, C.T.; Duffin, R.; Mackellar, A.; Felton, J.M.; Paemka, L.; Mccullagh, B.N.; Lucas, C.D.; Dorward, D.A.; McKone, E. F.; Cooke, G.; Donnelly, S.C.; Singh, P.K.; Stoltz, D.A.; Haslett, C.; McCray, P.B.; Whyte, M.K.B.; Rossi, A.G.; Davidson, D.J. Delayed neutrophil apoptosis enhances NET formation in cystic fibrosis. Thorax, v. 73, p.134-144, 2017.

Greene, C.M; Mcelvaney, N.G. Proteases and antiproteases in chronic neutrophilic lung disease- relevance to drug discovery. British Journal Of Pharmacology, v. 158, n. 4, p.1048-1058, 2009.

Gupta, A.K.; Joshi, M.B.; Philippova, M.; Erne, P.; Hasler, P.; Hahn, S.; Resink, T.J. Activated endotelial cells induce neutrophil extracellular traps and are susceptible to netosis-mediated cell death. FEBS Lett, v. 584, p. 3193–3197, 2010.

Hurley, B.P.; Siccardi, D.; Mrsny R.J.; McCormick, B.A. Polymorphonuclear Cell Transmigration Induced by Pseudomonas aeruginosa Requires the Eicosanoid Hepoxilin A3. The Journal Of Immunology, v. 173, p.5712-5720, 2004.

IBGE. Ministério da Saúde. Ministério do Planejamento, Orçamento e Gestão. (2014). Pesquisa Nacional de Saúde 2013: percepção do estado de saúde, estilos de vida e doenças crônicas. Rio de Janeiro. Recuperado de ftp://ftp.ibge.gov.br/PNS/2013/pns2013.pdf

Instituto Brasileiro de atenção à fibrose cística. Doença do Suor Salgado? Mucoviscidose? Fibrose Cística? Qual é o nome certo? Disponível em:

cistica-qual-e-o-nome-certo-afinal/>. Acesso em: 19 maio 2019.

IV Diretizes Brasileiras para o Manejo da Asma. J. bras. pneumol., São Paulo , v. 32, supl. 7, p. S447-S474, Nov. 2006 . Available from <http://www.scielo.br/scielo.php?scr ipt=sci_ar t text&pid=S1806-37132006001100002&lng=en&nrm=iso>. Access on 06 Oct. 2019. http://dx.doi.org/10.1590/S1806-37132006001100002.

Kaplan, M. J.; Radic, M. Neutrophil Extracellular Traps: Double-Edged Swords of Innate Immunity. The Journal Of Immunology, v. 189, p. 2689-2695, 2012.

Khan, M.A.; Ali, Z.S.; Sweezey, N.; Grasemann, H.; Palaniyar, N. Progression of Cystic Fibrosis Lung Disease from Childhood to Adulthood: Neutrophils, Neutrophil Extracellular Trap (NET) Formation, and NET Degradation. Genes, v. 10, p. 183-205, 2019.

Kumar, Vinay; ABBAS, Abul K.; ASTER, Jon C. Distúrbios hemodinâmicos, tromboembolismo e choque: hemostasia e trombose. In: KUMAR, Vinay; ABBAS, Abul K.; ASTER , Jon C. Robbins Patologia Básica. 9. ed. Rio de Janeiro: Elsevier, 2013. cap. 3, p. 75-98. ISBN 978-85-352-6294-0.

Laridan, E.; Martinod, K.; Meyer, S.de. Neutrophil extracellular traps in arterial and venous thrombosis. Seminars In Thrombosis And Hemostasis, v. 45, p.086-093, 2019.

Law, S.M.; Gray, R.D. Neutrophil extracellular traps and the dysfunctional innate immune response of cystic fibrosis lung disease: a review. Journal Of Inflammation, v. 14, p.1-8, 2017.

Line, B.R. pathophysiology and diagnosis of deep venous thrombosis. Seminars Nuclear Med, v. 31, p. 90–101, 2001.

Littlewood, J.M.. History of Cystic Fibrosis. In: HODSON, Margaret E.; BUSH, Andrew; GEDDES, Duncan M. Cystic Fibrosis: Third Edition. 3. ed. London: Hodder Arnold,. Cap. 1. p. 3-20, 2007.

Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. The Lancet, v. 380, p.2095-2128, 2012.

Lyons, A. C., & Chamberlain, K. Health Psychology: A Critical Introduction. New York: United States of America by Cambridge University Press., 2006.

Ma, A.; C, Kubes, P. Platelets Neutrophils And Neutrophil Extracel-Lular Traps (Nets) In Sepsis. J Thrombosis Haemostasis, v. 6, p. 415–420, 2008.

Martínez-Alemán, S.R.; Campos-García, L.; Palma-Nicolas, J.P.; Hernández-Bello, R.; González, G.M.; Sánchez-González, A. Understanding the Entanglement: Neutrophil Extracellular Traps (NETs) in Cystic Fibrosis. Frontiers In Cellular And Infection Microbiology, v. 7, p.1-7, 2017.

Martinod, K.; Wagner, D. D.. THROMBOSIS: TANGLED UP IN NETS. Blood, v. 123, p.2768-2776, 2013.

Massberg, S; Grahl L; von Bruehl ML; Manukyan D; Pfeiler S et al. Reciprocal Coupling Of Coagulation And Innate Immunity Via Neutrophil Serine Proteases. Nature Medicine, v. 16, p.887-896, 2010.

Menegazzo, L.; Ciciliot S.; Poncina N.; Mazzucato M.; Persano M.; Bonora B.; Albiero M.; Kreutzenberg S. V.; Avogaro A.; Fadini G. P. NETosis is induced by high glucose and associated with type 2 diabetes. Acta Diabetologica, v. 52, p.497-503, 2014.

Mulcahy, H.; Charron-Mazenod, L.; Lewenza, S. Extracellular DNA Chelates Cations and Induces Antibiotic Resistance in Pseudomonas aeruginosa Biofilms. Plos Pathogens, v. 4, p.1-12, 2008.

Ozougwu, O. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. Journal Of Physiology And Pathophysiology, v. 4, p.46-57, 2013.

Pazos, M.A.; Pirzai, W.; Yonker, L.M.; Morisseau C.; Gronert, K.; Hurley, B.P. Distinct Cellular Sources of Hepoxilin A3 and Leukotriene B4 Are Used To Coordinate Bacterial-Induced Neutrophil Transepithelial Migration. The Journal Of Immunology, v. 194, p.1304-1315, 2014.

Pham, D.L.; Ban, G.-Y.; Kim, S.-H.; Shin, Y. S.; Ye, Y.-M.; Chawae, Y.-J.; Park, H.-S. Neutrophil autophagy and extracellular DNA traps contribute to airway inflammation in severe asthma. Clinical & Experimental Allergy, v. 47, p.57-70, 2016.

Porto, B.N.; Stein, R.T. Neutrophil Extracellular Traps in Pulmonary Diseases: Too Much of a Good Thing?. Frontiers In Immunology, v. 7, p.47-51, 2016.

Qin, J.; Fu, S.; Speake, C.; Greenbaum, C.J.; Odegard, J.M. NETosis-associated serum biomarkers are reduced in type 1 diabetes in association with neutrophil count.

Clin Exp Immunol., v. 184, p. 318-22, 2016. Rada, B. Interactions between Neutrophils and Pseudomonas aeruginosa in Cystic Fibrosis. Pathogens, v. 6, p.1-24, 2017a.

Rada, B. Neutrophil extracellular trap release driven by bacterial motility: Relevance to cystic fibrosis lung disease. Communicative & Integrative Biology, v. 10, p.1-4, 2017b.

Registro brasileiro de fibrose cística 2017. [s. I]: Grupo Brasileiro de Estudos de Fibrose Cística, 2017.

Reyes-García A. M.; Aroca A.; Arroyo A.b.; Garcia-Barbera N.; Vicente V.; González-Coneiero R.; Martínez C. Neutrophil extracellular trap components increase the expression of coagulation factors. Biomedical Reports, p.195-201, 2019.

Rout-Pitt, N.; Farrow, N.; Parsons, D; Donnelley, M. Epithelial mesenchymal transition (EMT): a universal process in lung diseases with implications for cystic fibrosis pathophysiology. Respiratory Research, v. 19, p.1-11, 2018.

Segal, A. W. How Neutrophils Kill Microbes. Annual Review Of Immunology, v. 23, p.197-223, 2005.

Silva, E.C.F. Asma brônquica. Braziliaan Journal Of Health And Biomedical Science, v. 2, p.33-57, 2008.

Simon, D.; Simon, H-U.; Yousefi, S. Extracellular DNA traps in allergic, infectious, and autoimmune diseases. Allergy, v. 68, p. 409-416, 2013.

Skopelja-Gardner, S.; Hamilton, J.; Jones, J.D.; Yang, M.L.; Mamula, M.J.; Ashare, A.; Gifford, A.H.; Rigby, W.F.C. The role of neutrophil extracellular traps in cystic fibrosis autoimmunity. JCI Insight, v.1, p. 1-12, 2016.

Souza, E.C.O.; Santos, E.S.; Rosa, A.M.; Botelho, C. ARTIGO. Varredura espaço-temporal para identificação de áreas de risco para hospitalização de crianças por asma em Mato Grosso. Revista Brasileira de Epidemiologia, v. 22, p.183-191, 2019.

Taketomi, E. A.; Marra, S.M.G.; Segundo, G.R.S. Fisioterapia em Asma Efeito na Função Pulmonar e em Parâmetros Imunológicos. Fitness & Performance Journal, Rio de Janeiro, v. 4, p.97-100, 2005.

Todo-Bom, A.; Pinto, A.M. Fisiopatologia da asma grave. Revista Portuguesa de Imunoalergologia, Coimbra, v. 2, n. 4, p.43-48, 15 set. 2006. Mensal. Disponível em: <https://estudogeral.sib.uc.pt/bitstream/10316/20230/1/Fisiopatologia%20da%20Asma%20Grave%20(RPIA2006).pdf>. Acesso em: 01 set. 2019.

Vargas, A.; Boivin, R.; Cano, R.B.P.; Murcia, Y.; Bazin, I.; Lavoi, J.-P. Neutrophil extracellular traps are downregulated by glucocorticosteroids in lungs in an equine model of asthma. Respiratory Research, v. 18, p.56-63, 2017.

Von Brühl, M.L.; Stark, K.; Steinhart, A.; Chandraratne, S.; Konrad, I.; Lorenz, M.; Khandoga, A.; Tirniceriu, A.; Coletti, R.; Köllnberger, M.; et al. Monocytes neutrophils and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med, v 209, p. 819–835, 2012.

Wang, Y.; Xiao Y.; Zhong L.; Ye D.; Zhang J.; Tu Y.; Bornstein S. R.; Zhou Z.; Lam K. S.L.; Xu A. Increased Neutrophil Elastase and Proteinase 3 and Augmented NETosis Are Closely Associated With -Cell Autoimmunity in Patients With Type 1 Diabetes. Diabetes, v. 63, p.4239-4248, 2014.

Xu, J.; Zhang, X.; Pelayo, R.; Monestier, M.; Ammollo, C.T.; et al. Extracellular histones are major mediators of death in sepsis. Nature Medicine, v. 15, p.1318-1321, 2009.

You, Q.; He, D.M.; Shu, G.F.; Cao, B.; Xia, Y.Q.;Xing, Y.; Ni, M.; Chen, J.F.; Shi, S.L.; Gu, H.F., et al. Increased formation of neutrophil extracellular traps isassociated with gut leakage in patients with type 1 but not type 2 diabetes. J Diabetes., v. 11, p. 665-673, 2019.

Zaccardi, F.; Webb D.R.; Yates T.; Davies M.J. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgraduate Medical Journal, v. 92, p.63-69, 2015.

Zawrotniak, M.; Rapala-Kozik, M. Neutrophil extracellular traps (NETs): formation and implications. Acta Abp Biochimica Polonica. p. 277-284, 2013.

Published

09/06/2020

How to Cite

Correia, B. C. ., Camargo, P. H. ., Mendes, R. T. ., Lima, S. C. ., Tefé-Silva, C. ., & Zoccal, K. F. . (2020). Network play important role in chronic diseases: a literature review. Health & Diversity Journal, 4(1), 30–37. https://doi.org/10.18227/hd.v4i1.7524

Issue

Section

Articles