The anti-inflammatory and antitumor effects of medicinal plants: Arctium lappa, Solanum torvum and Lobelia inflata

Autores

  • Bárbara S Paschoal Medical School, Barão de Mauá University Center - CBM, Ribeirão Preto, Brazil.
  • Gabriela C. Carvalho Medical School, Barão de Mauá University Center - CBM, Ribeirão Preto, Brazil
  • Gabriela Cauzzo Medical School, Barão de Mauá University Center - CBM, Ribeirão Preto, Brazil.
  • Vanessa L. Campo Medical School, Barão de Mauá University Center - CBM, Ribeirão Preto, Brazil.
  • Karina F. Zoccal Medical School, Barão de Mauá University Center - CBM, Ribeirão Preto, Brazil.
  • Cristiane Tefé-Silva Medical School, Barão de Mauá University Center - CBM, Ribeirão Preto, Brazil.

DOI:

https://doi.org/10.18227/hd.v4i2.7537

Palavras-chave:

Arctium lappa, Solanum torvum, Lobelia inflata, melanoma, skin cancer

Resumo

Introduction: Medicinal plants have been used since antiquity to treat illnesses and injuries. Considering their global use, many natural products have been investigated with the aim to get new drugs. Methods: The search was based on relevant articles indexed in PubMed, Scielo and Scopus. The search terms used were: medicinal plants, Arctium lappa, Solanum torvum, Lobelia inflata, anti-inflammatory effects, antimicrobial activity and antitumor effects. Development: Arctium lappa leads to the inhibition of nitric oxide synthase (iNOS) expression and nitric oxide (NO) production and inhibits the growth of some tumor cell lines. Solanum torvum can promote inhibition of inflammatory mediators release, and reduces the melanoma formation. Lobelia inflata can reduce the number of white blood cells, the TNF-α and IL-6 levels and the melanoma growth. Conclusion: The active principles present in these medicinal plants, including flavonoids and other phenolic compounds with antioxidant activity, can scavenge free radicals and therefore be effective against tumors, such as melanoma and skin cancer.

Downloads

Não há dados estatísticos.

Referências

Al-Hay, H Abd et al. Prospective Role of Solanum Cultures in Producing Bioactive Agents against Melanoma, Breast, Hematologic Carcinomas Cell Lines and Associated Microbiome. Journal of Biological Sciences, 18: 297-306, 2018. http://dx.doi.org/10.3923/jbs.2018.297.306.

Antezana, A.; et al. Susumber berries: Unexpected cause of cholinergic poisoning. Neurol Clin Pract. 2(4):362-363, 2012. doi:10.1212/CPJ.0b013e31826af1f6

Arthan, D.; Svasti, J.; Kittakoop, P.; Pittayakhachonwut, D.; Tanticharoen, M.; Thebtaranonth, Y. Antiviral isoflavonoid sulfate and steroidal glycosides from the fruits of Solanum torvum. Phytochemistry.59(4):459-63. Feb 2002. doi: 10.1016/s0031-9422(01)00417-4.

Arung E.T.; Kusuma I.W.; Christy E.O; Shimizu K.; Kondo R. Evaluation of medicinal plants from Central Kalimantan for antimelanogenesis. J Nat Med. 63(4):473-80, 2009. doi: 10.1007/s11418-009-0351-7.

Autier P; Doré J.F.; Influence of sun exposures during childhood and during adulthood on melanoma risk. EPIMEL and EORTC Melanoma Cooperative Group. European Organisation for Research and Treatment of Cancer. Int J Cancer. 77(4):533-537, 1998. doi:10.1002/(sici)1097- 0215(19980812)77:4<533::aid-ijc10>3.0.co;2-7

Awale, S.; et al. Identification of arctigenin as an antitumor agent having the Ability to Eliminate the Tolerance of Cancer Cells to Nutrient Starvation. Cancer Research, 66(3):1751-1757, 2006. http://dx.doi.org/10.1158/0008- 5472.can-05-3143.

Azab, A.; Nassar, A;. Azab, A. N. Anti-Inflammatory Activity of Natural Products. Molecules. 21(10):1321, 2016. doi:10.3390/molecules21101321

Balachandran, C. et al. Antimicrobial and Antimycobacterial Activities of Methyl Caffeate Isolated from Solanum torvum Swartz. Fruit. Indian Journal of Microbiology. 52(4): 676-681, 2012. http://dx.doi.org/10.1007/s12088- 012-0313-8.

Balachandran, C. et al. In vitro anticancer activity of methyl caffeate isolated from Solanum torvum Swartz. fruit. Chemico-Biological Interactions. 242: 81-90, 2015. http://dx.doi.org/10.1016/j.cbi.2015.09.023.

Bari, M.A., Islam W.; Khan A.R.; Mandal A. Antibacterial and antifungal activity of Solanum torvum (solanaceae). Int. J. Agric. Biol., 12: 386–390, 2010.

Bhakuni, D.S.; Dhar, M.L.; Dhawan, B.N.; Meirotra, B.N. Screening of Indian plants for biological activity. II. Indian J Exp Biol 7(4): 250-262, 1969.

Cassileth, B.R.; Barazzuol, J.D. Herbal products and other supplements: Problems of special relevance to surgery. Journal of Pelvic Surgery, v.7, 21-26, 2001.

Chah, K.F.; Muko K.N.; Oboegbulem S.I. Antimicrobial activity of methanolic extract of Solanum torvum fruit. Fitoterapia. 71(2):187-9, 2000. doi: 10.1016/s0367- 326x(99)00139-2.

Chan, Y.S; Cheng, L.N.; Wu, J.H.; Chan, E.; Kwan, Y.W.; Lee S. M.; Leung, G.P.; Yu, P.H.; Chan, S.W. A review of the pharmacological effects of Arctium lappa (burdock). Inflammopharmacology. 19(5):245-54, 2011. doi: 10.1007/s10787-010-0062-4.

Cho, M.K.; Park, J.W.; Jang, Y.P.; Kim, Y.C.; Kim, S.G. Potent inhibition of lipopolysaccharide-inducible nitric oxide synthase expression by dibenzylbutyrolactone lignans through inhibition of I-kappa B alpha phosphorylation and of p65 nuclear translocation in macrophages. Int Immunopharmacol. 2(1):105-16, 2002. doi: 10.1016/s1567-5769(01)00153-9.

Cui, X.; Gu, X.; Kang, W. Antioxidant activity in vitro and hepatoprotective effects in vivo of compound Lobelia. Afr J Tradit Complement Altern Med. 12;13(5):114-122, 2016. doi: 10.21010/ajtcam.v13i5.15. PMID: 28487901; PMCID: PMC5416629.

Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules, 15, 7313-7352, 2010.

Dwoskin, L.P;Crooks, P.A. A novel mechanism of action and potential use for lobeline as a treatment for psychostimulant abuse. Biochem Pharmacol. 15;63(2):89- 98, 2002. doi: 10.1016/s0006-2952(01)00899-1. PMID: 11841781.

Eyerman, D. J.; Yamamoto, B. K. Lobeline Attenuates Methamphetamine Induced Changes in Vesicular Monoamine Transporter 2 Immunoreactivity and Monoamine Depletions in the Striatum. The Journal of Pharmacology and Experimental Therapeutics. 312:160- 169, 2005.

Ferracane, R.; Graziani, G; Gallo, M.; Fogliano, V.; Ritieni, A. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves. J Pharm Biomed Anal. 20;51(2):399-404, 2010. doi: 10.1016/j. jpba.2009.03.018.

Folkman, J. Role of Angiogenesis in Tumor Growth and Metastasis. Seminars in Oncology, Boston, 29 (6):15-18, 2002. http://dx.doi.org/10.1016/s0093-7754(02)70065-1.

Folquitto, D.G.; Swiech, J.N.D; Pereira, C.B. et al. Biological activity, phytochemistry and traditional uses of genus Lobelia (Campanulaceae): A systematic review. Fitoterapia. 134:23-38, 2019. doi:10.1016/j. fitote.2018.12.021

Garcia, N.P.; Ireno, L.C.; De Castro, M.P. et al. Antitumoral effect of Lobelia inflata in an experimental mouse model of melanoma. Biomed J Sci & Tech Res 25: 18856-18864, 2020.

Geiger, T.R.; Peeper, D. S. Metastasis Mechanisms. Biochimica Et Biophysica Acta (bba) - Reviews on Cancer, Amsterdam, 1796(2): 293-308, 2009. http://dx.doi.org/10.1016/j.bbcan.2009.07.006.

Gu, Y.; Qi, C.; Sun, X.; Ma, X.; Zhang, H.; Hu, L.; Yuan, J.; Yu, Q. Arctigenin preferentially induces tumor cell death under glucose deprivation by inhibiting cellular energy metabolism. Biochem Pharmacol.15;84(4):468-76, 201276, 2012. doi: 10.1016/j.bcp.2012.06.002.

Guy, G.P. Jr.; Thomas, C.C.; Thompson, T.; Watson, M.; Massetti, G.M.; Richardson, L.C; Centers for Disease Control and Prevention (CDC). Vital signs: melanoma incidence and mortality trends and projections - United States, 1982-2030. MMWR Morb Mortal Wkly Rep. 5;64(21):591-6, 2015.

Harrod, S. B.; Dwoskin, L. P.; Bardo, M. T. Lobeline produces conditioned taste avoidance in rats. Pharmacology Biochem Behav. 78:1-5, 2004.

He, Y.; Fan, Q.; Cai, T.; Huang, W.; Xie, X.; Wen, Y.; Shi Z. Molecular mechanisms of the action of Arctigenin in cancer. Biomed Pharmacother. 108:403-407, 2018. doi: 10.1016/j.biopha.2018.08.158.

Hirose, M.; Yamaguchi, T.; Lin, C.; Kimoto, N.; Futakuchi, M.; Kono, T.; Nishibe, S.; Shirai, T. Effects of arctiin on PhIP-induced mammary, colon and pancreatic carcinogenesis in female Sprague-Dawley rats and MeIQx-induced hepatocarcinogenesis in male F344 rats. Cancer Lett. 3;155(1):79-88, 2000. doi: 10.1016/s0304- 3835(00)00411-0.

Hsieh, C.J; Kuo, P.L; Hsu, Y.C.; Huang, Y.F.; Tsai, E.M.; Hsu, Y.L. Arctigenin, a dietary phytoestrogen, induces apoptosis of estrogen receptor-negative breast cancer cells through the ROS/p38 MAPK pathway and epigenetic regulation. Free Radic Biol Med. 67:159-70, 201470, 2014. doi: 10.1016/j.freeradbiomed.2013.10.004.

Hughes, P.W.; Jaworski, A.F.; Davis, C.S.; Aitken, S.M.; Simons, A.M. Development of polymorphic microsatellite markers for Indian tobacco, Lobelia inflata (Campanulaceae)() (1.). Appl Plant Sc.2(4): 2014. doi:10.3732/apps.1300096

Ireno, LC.; Garcia, NP.; Moreira, MRA. et al. Evaluation of the Lobelia inflata extract in the histopathological profile of melanoma in experimental model. Biomed J Sci & Tech Res 26(3)-2020. doi: 10.26717/BJSTR.2020.26.004348

Iwakami, S., Wu, J.B.; Ebizuka, Y.; Sankawa, U. Platelet activating factor (PAF) antagonists contained in medicinal plants: lignans and sesquiterpenes. Chem Pharm Bull. 40(5):1196-8, 1992, doi: 10.1248/cpb.40.1196.

Jaiswal, B.S. Solanum torvum: A review of its traditional uses, phytochemistry and pharmacology. Int J Pharm Bio Sci. 3 (4):104-111, 2012.

Kala, C.P.; Dhyani, P.P.; Sajwan, B.S. Developing the medicinal plants sector in northern India: challenges and opportunities. J Ethnobiol Ethnomed. 2:32, 2006. doi:10.1186/1746-4269-2-32

Karlsson, A; Saleh, S. Checkpoint inhibitors for malignant melanoma: A Systematic Review and Meta- Analysis. Clinical, Cosmetic and Investigational Dermatology, [s.l.], 10: 325-339, 2017339, 2017. http:// dx.doi.org/10.2147/ccid.s120877.

Kumar, V., Abbas, A.K., Fausto, N., Aster, J.C. Robbins & Cotran Patologia: Bases Patológicas das Doenças. Elsevier, Rio De Janeiro, 2016.

Kumari, P.; Luqman, S.; Meena, A. Application of the combinatorial approaches of medicinal and aromatic plants with nanotechnology and its impacts on healthcare. Daru. 27(1):475-489. 2019. doi:10.1007/s40199-019-00271-6

Kursinszki L, Szőke É. HPLC-ESI-MS/MS of brain neurotransmitter modulator lobeline and related piperidine alkaloids in Lobelia inflata L. J Mass Spectrom. 50(5):727- 33, 2015. doi: 10.1002/jms.3581. PMID: 26259655.

Lee, S.; Shin, S.; Kim, H. et al. Anti-inflammatory function of arctiin by inhibiting COX-2 expression via NF- κB pathways. J Inflamm (Lond). 7;8(1):16. 2011. doi: 10.1186/1476-9255-8-16.

Levinson, W. Microbiologia médica e imunologia. Porto Alegre, AMGH, 2016.

Li, J; Zhang, L; Huang, C; Guo, F; Li, Y. Five new cyotoxic steroidal glycosides from the fruits of Solanum torvum. Fitoterapia. 93:209-215, 2014. http://dx.doi. org/10.1016/j.fitote.2014.01.009.

Ling, B.; Michel, D.; Sakharkar, M.K.; Yang, J. Evaluating the cytotoxic effects of the water extracts of four anticancer herbs against human malignant melanoma cells. Drug Des Devel Ther. 10:3563-3572, 2016. doi:10.2147/DDDT. S119214

Liu, B.; Bai, M.; Peng, M.; Miao, M. Anti-inflammatory effect and the effect on acute pharyngitis rats model of compound Lobelia oral liquid. Saudi J Biol Sci.;26(3):577- 581, 2019. doi:10.1016/j.sjbs.2018.11.018

Loganayaki, N; Siddhuraju, P; Manian, S. Antioxidant activity of two traditional Indian vegetables: solanum nigrum l. and Solanum torvum l. Food Science and Biotechnology. 19(1): 121-127, 2010. http://dx.doi. org/10.1007/s10068-010-0017-y.

Loquai, C.; Dechent, D.; Garzarolli, M. et al. Risk of interactions between complementary and alternative medicine and medication for comorbidities in patients with melanoma. Med Oncol.;33(5):52. 2016. doi:10.1007/ s12032-016-0764-6

Lu, S.; Zhu, Q.; Zhang, Y.; Song, W.; Wilson, M.J.; Liu, P. Dual-Functions of miR-373 and miR-520c by Differently Regulating the Activities of MMP2 and MMP9. J Cell Physiol. 230(8):1862-70, 2015. doi: 10.1002/jcp.24914.

Ma Y.; Wink, M. Lobeline, a piperidine alkaloid from Lobelia can reverse P-gp dependent multidrug resistance in tumor cells. Phytomedicine. 15(9):754-758, 2008. doi:10.1016/j.phymed.2007.11.028

Maione, F.; Russo, R.; Khan, H.; Mascolo, N. Medicinal plants with anti-inflammatory activities. Nat Prod Res;30(12):1343-1352, 2016. doi:10.1080/14786419.201 5.1062761

Matsuzaki, Y.; Koyama, M.; Hitomi, T.; Yokota, T.; Kawanaka, M.; Nishikawa, A.; Germain, D.; Sakai T. Arctiin induces cell growth inhibition through the down-regulation of cyclin D1 expression. Oncol Rep. 19(3):721- 7, 2008.

Mishra, H.; Mishra, P.K;. Ekielski, A.; Jaggi, M.; Iqbal, Z.; Talegaonkar, S. Melanoma treatment: from conventional to nanotechnology. J Cancer Res Clin Oncol. 144(12):2283-2302, 2018. doi: 10.1007/s00432-018-2726-1.

Moritani, S.; Nomura, M.; Takeda, Y.; Miyamoto, K. Cytotoxic components of Bardanaefructus (goboshi). Biol Pharm Bull. 19(11):1515-7, 1996. doi: 10.1248/ bpb.19.1515.

Nascimento, B. A. C.; Gardinassi, L.G, Silveira, I.M.G.; Gallucci, M.G; Tomé, M.A. Oliveira, J.F.D, Moreira, M.R.A, Meirelles, A.F.G.; Faccioli, L.H, Tefé-Silva, C.; Zoccal; K. F. Arctium lappa Extract Suppresses Inflammation and Inhibits Melanoma Progression. Medicines (Basel). 29;6(3):81, 2019. doi: 10.3390/ medicines6030081.

Naser, N. Cutaneous melanoma: a 30-year-long epidemiological study conducted in a city in southern Brazil, from 1980-2009. An Bras Dermatol.86(5):932-941, 2011. doi:10.1590/s0365-05962011000500011.

Ndebia, E.J.; Kamgang, R.; Nkeh-ChungagAnye, B.N. Analgesic and anti-inflammatory properties of aqueous extract from leaves of Solanum torvum (Solanaceae). Afr J Tradit Complement Altern Med. 13;4(2):240-4, 2006. doi: 10.4314/ajtcam.v4i2.31214.

Pereira, J.V.; Bergamo, D.C.; Pereira, J.O.; França, S. C.; Pietro, R.C.; Silva-Sousa, Y.T. Antimicrobial activity of Arctium lappa constituents against microorganisms commonly found in endodontic infections. Braz Dent J. 16(3):192-6. 2005. doi: 10.1590/s0103- 64402005000300004.

Pollard, J.W. Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol. 84(3):623-630, 2008. doi:10.1189/jlb.1107762.

Rice-Evans, C.A, Miller, N.J, Bolwell, P.G, Bramley, P.M.; Pridham, J.B. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic Res.;22(4):375- 83, 1995. doi: 10.3109/10715769509145649. PMID: 7633567.

Rodriguez, P., Blanco, J., Juste, S., Garces, M., Perez, R., Alonso, L., et al. Allergic contact-dermatitis due to burdock (Arctium-Lappa). Contact Dermat. 33, 134–135, 1995. doi: 10.1111/j.1600-0536.1995.tb00524.x

Rosko, A.J.; Vankoevering, K.K.; McLean, S.A.; Johnson, .TM.; Moyer, J.S. Contemporary Management of Early-Stage Melanoma: A Systematic Review. JAMA Facial Plast Surg. 1;19(3):232-238, 2017. doi: 10.1001/ jamafacial.2016.1846.

Sano, R.; Reed, J.C. ER stress-induced cell death mechanisms. Biochim Biophys Acta.;1833(12):3460- 3470, 2013. doi:10.1016/j.bbamcr.2013.06.028.

Sen, S.; Chakraborty, R. Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: Importance, challenges and future. J Tradit Complement Med. 7(2):234-244. 2016. doi:10.1016/j. jtcme.2016.05.006

Sherr, C.J. Mammalian G1 cyclins. Cell. 18;73(6):1059-65, 1993. doi: 10.1016/0092-8674(93)90636-5.

Silveira, P. F.; Bandeira, M.A. M.; Arrais, P.S.D. Farmacovigilância e reações adversas às plantas medicinais e fitoterápicos: uma realidade. Revista Brasileira de Farmacognosia. 2008, 18(4), 618-626. https://doi. org/10.1590/S0102-695X2008000400021

Shinohara, K.; et al. Antimutagenicity Of Dialyzates of Vegetables and Fruits. Agricultural and Biological Chemistry, 52 (6): 1369-1375, 1988. http://dx.doi. org/10.1271/bbb1961.52.1369.

Sivapriya, M; Leela, S. Isolation and purification of a novel antioxidante protein from the water extract of Sundakai (Solanum torvum) seeds. Food Chemistry. 104(2) 510-517, 2007. http://dx.doi.org/10.1016/j.foodchem.2006.11.060.

Smith, S.W.; et al. Solanaceous steroidal glycoalkaloids and poisoning by Solanum torvum, the normally edible susumber berry. Toxicon. 52(6):667-76, 2008. doi:10.1016/j.toxicon.2008.07.016.

Stansbury, J., Saunders, P. R., & Zampieron, E. The use of lobelia in the treatment of asthma and respiratory illness. Journal of Restorative Medicine, 2(1), 94-100, 2013.

Subarnas, A.; Oshima, Y.; Sidik, Ohizumi, Y. An antidepressant principle of Lobelia inflata L. (Campanulaceae). J Pharm Sci.81(7):620-621. 1992. doi:10.1002/jps.2600810705.

Sun, Q.; Liu, K.; Shen, X.; Jin, W.; Jiang.; Sheikh, M.S, Hu, Y.; Huang, Y. Lappaol F, a novel anticancer agent isolated from plant Arctium lappa L. Mol Cancer Ther. 13(1):49- 59, 2014. doi: 10.1158/1535-7163.MCT-13-0552.

Swayamsiddha, P.; Meenakshi, S. M; Ravichandran, N; Brindha, P. Anticancer activity of ethanolic extract of Solanum torvum sw. International Journal of Pharmacy and Pharmaceutical Sciences. 6:93, 2014.

Tamayo, C.; Richardson, M.A.; Diamond, S.; Skoda, I. The chemistry and biological activity of herbs used in Flor-Essence herbal tonic and Essiac. Phytother Res. 14(1):1-14, 200014, 2000. doi: 10.1002/(sici)1099- 1573(200002)14:1<1::aid-ptr580>3.0.co;2-o.

Thompson, J.F.; Scolyer, R.A.; Kefford, R.F. Cutaneous melanoma. The Lancet, 365: 687-701, 2005.

Townsend, C. M.; Evers, B. M.; Beauchamp, R. D. & Mattox, K. L. - Sabiston Textbook of Surgery. The Biological Basis of Modern Surgical Practice. 18th Ed, Saunders Elsevier, 2019.

Urazova, L.N.; Kuznetsova, T.I.; Boev, R.S.; Burkova, V.N. Efficacy of natural L-asparagine in the complex therapy for malignant tumors in experimental studies. Exp Oncol. 33(2):90-3, 2011.

Vervoort, S.J.; Lourenço, A.R.; van Boxtel, R.; Coffer, P.J. SOX4 mediates TGF-β-induced expression of mesenchymal markers during mammary cell epithelial to mesenchymal transition. PLoS One. 8(1):e53238, 2013. doi: 10.1371/journal.pone.0053238.

Wu, J.G.; Wu, J.Z.; Sun, L.N; Han, T.; Du. J.; Ye, Q.; Zhang, H.; Zhang, Y.G. Ameliorative effects of arctiin from Arctium lappa on experimental glomerulonephritis in rats. Phytomedicine. 16(11):1033-41, 2009 doi: 10.1016/j. phymed.2009.04.005.

Yap, K.Y.; See, C.S.; Chan, A. Clinically- relevant chemotherapy interactions with complementary and alternative medicines in patients with cancer. Recent patents on food, nutrition & agriculture. 2:12-55, 2010.

Yari, S.; Karamian, R.; Asadbegy, M.; Hoseini, E.; Moazzami Farida, S.H. The protective effects of Arctium lappa L. Extract on testicular injuries induced by ethanol in rats. Andrologia. 50(9):e13086, 2018. doi: 10.1111/ and.13086.

Zanotelli.; M.R.; Reinhart-King, CA. Mechanical Forces in Tumor Angiogenesis. Adv Exp Med Biol.1092:91-112. 2018. doi:10.1007/978-3-319-95294-9_6.

Zhang, L.; Khoo CS.; Koyyalamudi, SR.; De Pedro, N.; Reddy, N. Antioxidant, anti-inflammatory and anticancer activities of ethanol soluble organics from water extracts of selected medicinal herbs and their relation with flavonoid and phenolic contents. Pharmacologia, 8:59-72, 2017.

Zhou, B.; Weng, G.; Huang, Z.; Liu, T.; Dai, F. Arctiin Prevents LPS-Induced Acute Lung Injury via Inhibition of PI3K/AKT Signaling Pathway in Mice. Inflammation. 41(6):2129-2135, 2018. doi: 10.1007/s10753-018-0856-

Downloads

Publicado

19/11/2020

Como Citar

Paschoal , B. S. ., Carvalho, G. C. ., Cauzzo, G., Campo, V. L. ., Zoccal, K. F. ., & Tefé-Silva, C. . (2020). The anti-inflammatory and antitumor effects of medicinal plants: Arctium lappa, Solanum torvum and Lobelia inflata. Revista Saúde & Diversidade, 4(2), 84–91. https://doi.org/10.18227/hd.v4i2.7537

Edição

Seção

Artigos