Swimming exercise modifies oxidative stress in skeletal and cardiac muscles of diabetic rats

Autores

  • Talita F. Pio Graduate Program in Biomedical Sciences, University Center of Hermınio Ometto Foundation, Araras, Sao Paulo, Brazil.
  • Lucas E. Orzari Graduate Program in Biomedical Sciences, University Center of Hermınio Ometto Foundation, Araras, Sao Paulo, Brazil.
  • Armindo A. Alves Graduate Program in Biomedical Sciences, University Center of Hermınio Ometto Foundation, Araras, Sao Paulo, Brazil.
  • Paulo C. L. Silveira Graduate Program in Science of Health, Laboratory of Experimental Physiopathology, University of Extremo Sul Catarinense, Criciuma, Santa Catarina, Brazil.
  • Marcelo A.M. Esquisatto Graduate Program in Biomedical Sciences, University Center of Hermınio Ometto Foundation, Araras, Sao Paulo, Brazil.
  • Thiago A. M. de Andrade Graduate Program in Biomedical Sciences, University Center of Hermınio Ometto Foundation, Araras, Sao Paulo, Brazil.
  • Maíra Felonato Graduate Program in Biomedical Sciences, University Center of Hermınio Ometto Foundation, Araras, Sao Paulo, Brazil.
  • Rodrigo A. Dalia Graduate Program in Biomedical Sciences, University Center of Hermınio Ometto Foundation, Araras, Sao Paulo, Brazil.

DOI:

https://doi.org/10.18227/hd.v5i1.7389

Palavras-chave:

Swimming exercise, diabetes, oxidative damage, skeletal muscle, cardiac muscle, fibrosis

Resumo

Introduction: Oxidative stress is a key factor leading to the deterioration of diabetes. Oxidative stress exacerbates diabetes and induction of the activity of the antioxidant system may be required to prevent this effect. Objetive: The aim of the present study was to evaluate the redox state in the skeletal and cardiac muscles in a diabetes rat model subjected to swimming exercise for 4 weeks. Methods: Wistar rats were divided into four groups: untrained control (C), trained control (T), untrained alloxan-induced diabetes (D), and trained alloxan-induced diabetes (TD). The redox state of the skeletal and cardiac muscles was assessed by analyzing TBARS, -SH groups, H2O2 production, and SOD and catalase activity. The total number of cardiomyocytes and the total area of collagen fibers in the cardiac muscle were measured by histomorphometry. Results: In the Soleus muscles, the TD group showed increased H2O2 levels and catalase activity compared to the T group, and SOD activity compared to the D group. Regarding the red gastrocnemius, the TD group presented higher SOD and lower catalase activities than the D group. Regarding the cardiac muscle, the TD group presented lower TBARS and higher levels of -SH groups and catalase activity than the D group. Swimming exercise decreased hyperglycemia and reduced pathology, as evidenced by the reduced number of cardiomyocytes and the area of collagen fibers. Conclusion: Swimming exercise in diabetic rats controlled hyperglycemia and oxidative damage, and the reduced fibrosis in the cardiac muscle of diabetic rats.

Downloads

Não há dados estatísticos.

Referências

Accattato, F.; Greco, M.; Pullano, S.A.; Fiorillo, A.S.; Pujia, U.; Montalcini, T., Foti, D.P.; Brunetti, U.M.; Gulletta, E. Effects of acute physical exercise on oxidative stress and inflammatory status in young, sedentary obese subjects. PLoS One, v. 12, e0178900, 2017.

Aebi, H. Catalase in vitro. Methods in Enzymology, v. 105, 121-126, 1984.

Anaruma, C.P.; Ferreira, M.; Sponton, C.H.; Delbin, M.A.; Zanesco, A. Heart rate variability and plasma biomarkers in patients with type 1 diabetes mellitus: Effect of a bout of aerobic exercise. Diabetes Research Clinical Practice, v. 111, 19-27, 2016.

Araújo, M.B.; Vieira Junior, R.C.; Moura, L.P.; Costa Junior, M.; Dalia, R.A.; Sponton, A.C.S.; Ribeiro, C.; Mello, M.A.R. Influence of creatine supplementation on indicators of glucose metabolism in skeletal muscle of exercised rats. Motriz, v. 19, 709-716, 2013.

Aro, C.E.; Russell, J.A.; Soto Muñoz, M.E.; Villegas González, B.E. Effects of high intensity interval training versus moderate intensity continuous training on the reduction of oxidative stress in type 2 diabetic adult patients: CAT. Medwave, v.15, e6212, 2015.

Asa, C.; Maria, S.; Katharina, S.S.; Bert, A. Aquatic exercise is effective in improving exercise performance in patients with heart failure and type 2 diabetes mellitus. Evidence Based Complementary Alternative Medicine, e349209, 2012.

Bannister, J.V.; Calabrese, L. Assays for superoxide dismutase. Methods Biochemistry Analytics, v. 32, 279-312, 1987.

Chu, P.Y.; Walder, K.; Horlock, D.; Williams, D.; Nelson, E.; Byrne, M.; Jandeleit-Dahm, K.; Zimmet, P.; Kaye, D.M. CXCR4 antagonism attenuates the development of diabetic cardiac fibrosis. PLoS One, v. 10, e0133616, 2015.

Colberg, S.R.; Laan, R.; Dassau, E.; Kerr, D. Physical activity and type 1 diabetes: time for a rewire? Journal Diabetes Science Technology, v. 9, 609-618, 2015.

Coleman, S.K.; Rebalka, I.A.; D'Souza, D.M.; Hawke, T.J. Skeletal muscle as a therapeutic target for delaying type 1 diabetic complications. World Journal of Diabetes, v. 17, 1323-1336, 2015.

Cunha, V.N.C.; Cunha, R.R.; Russo, S.P.; Moreira, S.R.; Simões, H.G. Swimming training at anaerobic threshold intensity improves the functional fitness of older rats. Revista Brasileira de Medicina do Esporte, v. 14, 533-38, 2008.

de Araujo, G.G.; Papoti, M.; Dos Reis, I.G.; de Mello, M.A.; Gobatto, C.A. Short and long term effects of high-intensity interval training on hormones, metabolites, antioxidant system, glycogen concentration, and aerobic performance adaptations in rats. Frontiers of Physiology, v. 7, 505, 2016.

Fatima, N.; Faisal, S.M.; Zubair, S.; Ajmal, M.; Siddiqui, S.S.; Moin, S.; Owais, M. Role of pro-inflammatory cytokines and biochemical markers in the pathogenesis of type 1 diabetes: correlation with age and glycemic condition in diabetic human subjects. PLoS One, v. 11, e0161548, 2016

.

Golbidi, S.; Badran, M.; Laher, I. Antioxidant and anti-inflammatory effects of exercise in diabetic patients. Experimental Diabetes Research, v. 12, e941868, 2012.

Gomes, E.C.; Silva, A.N.; de Oliveira, M.R. Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species. Oxidative Medicine and Cellular Longevity, e756132, 2012.

Gonchar, O. Effect of intermittent hypoxia on pro- and antioxidant balance in rat heart during high-intensity chronic exercise. Acta Physiologica Hungara, v. 92, 211-220, 2005.

Haghani, K.; Bakhtiyari, S.; Doost, M.J. Alterations in plasma glucose and cardiac antioxidant enzymes activity in streptozotocin-induced diabetic rats: effects of trigonella foenum-graecum extract and swimming training. Canadian Journal of Diabetes, v. 40, 135-142, 2016.

Hall, K.E.; McDonald, M.W.; Grisé, K.N.; Campos, O.A.; Noble, E.G.; Melling, C.W. The role of resistance and aerobic exercise training on insulin sensitivity measures in STZ-induced type 1 diabetic rodents. Metabolism, v. 62, 1485-1494, 2013.

He, X.; Zeng, H.; Chen, J.X. Ablation of SIRT3 causes coronary microvascular dysfunction and impairs cardiac recovery post myocardial ischemia. International Journal Cardiology, v. 215, 349-357, 2016.

He, F.; Li, J.; Liu, Z.; Chuang, C.C.; Yang, W.; Zuo, L. Redox Mechanism of Reactive Oxygen Species in Exercise. Frontiers of Physiology, v.7, 486, 2016.

Hirata, Y.; Nomura, K.; Senga, Y.; Okada, Y.; Kobayashi, K.; Okamoto, S.; Minokoshi, Y.; Imamura, M.; Takeda, S.; Hosooka, O.W. Hyperglycemia induces skeletal muscle atrophy via a WWP1/KLF15 axis. JCI Insight, v. 4, e124952, 2019.

Hu, J.; Klein, J.D.; Du, J.; Wang, X.H. Cardiac muscle protein catabolism in diabetes mellitus: activation of the ubiquitin-proteasome system by insulin deficiency. Endocrinology, v.149, 5384-5390, 2008.

Ji, L.L.; Zhang, Y. Antioxidant and anti-inflammatory effects of exercise: role of redox signaling. Free Radicals Research, v. 48, 3-11, 2014.

Kaul, K.; Apostolopolou, M.; Roden, M. Insulin resistance in type 1 diabetes mellitus. Metabolism, v. 64, 1629-1639, 2015.

Katsarou, A.; Gudbjörnsdottir, S.; Rawshani, A.; Dabelea, D.; Bonifacio, E.; Anderson, B.J.; Jacobsen, L.M.; Schatz, D.A.; Lernmark, Å. Type 1 diabetes mellitus. Nature Reviews Diseases Primers, v. 3, 17016, 2017.

Kim, J.S.; Lee, Y.H.; Kim, J.C.; Ko, Y.H.; Yoon, C.S.; Yi, H.K. Effect of exercise training of different intensities on anti-inflammatory reaction in streptozotocin induced diabetic rats. Biology of Sport, v. 31, 73-79, 2014.

Konior, A.; Schramm, A.; Czesnikiewicz-Guzik, M.; Guzik, T.J. NADPH oxidases in vascular pathology. Antioxidants & Redox Signaling, v. 20, 2794-2814, 2014.

Lambertucci, R.H.; Levada-Pires, A.C.; Rossoni, L.V.; Curi, R.; Pithon-Curi, T.C. Effects of aerobic exercise training on antioxidant enzyme activities and mRNA levels in soleus muscle from young and aged rats. Mechanisms Ageing Development, v. 128, 267-275, 2007.

Lascar, N.; Kennedy, A.; Jackson, N. Exercise to preserve beta cell function in recent-onset type 1 diabetes mellitus (EXTOD)--a study protocol for a pilot randomized controlled trial. Trials, v 14, 180, 2013.

Lawler, J.M.; Rodriguez, D.A.; Hord, J.M. Mitochondria in the middle: exercise preconditioning protection of striated muscle. Journal of Physiology, v. 594, 5161- 5183, 2016.

Lee, Y.; Kim, J.H.; Hong, Y.; Lee, S.R.; Chang, K.T.; Hong, Y. Prophylactic effects of swimming exercise on autophagy-induced muscle atrophy in diabetic rats. Laboratory Animal Research, v. 28, 171-179, 2012.

Le Floch, J.P.; Escuyer, P.; Baudin, E.; Baudon, D.; Perlemuter, L. Blood glucose area under the curve: methodological aspects. Diabetes Care, v.13, 172-175, 1990.

Lei, X.G;, Zhu, J.H.; Cheng, W.H.; Bao, Y.; Ho, Y.S.; Reddi, A.R.; Holmgren, A.; Arnér, E.S. Paradoxical roles of antioxidant enzymes: basic mechanisms and health implications. Physiological Reviews, v. 96, 307- 364, 2016.

Lenzen, S. Alloxan and streptozotocin diabetes, time structures of endocrine systems project framework. Endocrinology. v. 8, 119-138, 2007.

Loureiro, A.C.; do Rêgo-Monteiro, I.C.; Louzada, R.A.; Ortenzi, V.H.; de Aguiar, A.P.; de Abreu, E.S.; Cavalcanti-de-Albuquerque, J.P.; Hecht, F.; de Oliveira, A.C.; Ceccatto, V.M.; Fortunato, R.S.; Carvalho, D.P. Differential expression of NADPH oxidases depends on skeletal muscle fiber type in rats. Oxidative Medicine and Cellular Longevity, e6738701, 2016.

Lubkowska, A.; Bryczkowska, I.; Gutowska, I.; Rotter, I.; Marczuk, N.; Baranowska-Bosiacka, I.; Banfi, G. The effects of swimming training in cold water on antioxidant enzyme activity and lipid peroxidation in erythrocytes of male and female aged rats. International Journal Environmental Research Public Health, v. 16, 647, 2019.

Marcinko, K.; Steimberg, G.R. The role of AMPK in controlling metabolism and mitochondrial biogenesis during exercise. Experimental Physiology, v. 12, 1581- 1585, 2014.

Mataix, J.; Quiles, J.L.; Huertas, J.R.; Battino, H.; Mañas, M. Tissue specific interactions of exercise, dietary fatty acids, and vitamin E in lipid peroxidation. Free Radicals Biology and Medicine, v. 24, 511–521, 1998.

Moura, L.P.; Bertolini, N.O.; Ghezzi, A.C.; Bertucci, D.R.; Bonfim, M.R.; Serafim, T.H.S.; Pereira, A.S.; Garuffi, M., Mello, M.A.R.; Luciano, E. Glucose homeostasis in type 1 diabetic rats after acute physical activity. JEP online, v. 14, 8-19, 2011.

Naderi, R.; Mohaddes, G.; Mohammadi, M.; Ghaznavi, R.; Ghyasi, R.; Vatankhah, A,M. Voluntary exercise protects heart from oxidative stress in diabetic rats. Advanced Pharmaceutical Bulletin, v. 5, 231-236, 2015.

Novoa, U.; Arauna, D.; Moran, M.; Nuñez, M.; Zagmutt, S.; Saldivia, S.; Valdes, C.; Villaseñor, J.; Zambrano, C.G.; Gonzalez, D.R. High-intensity exercise reduces cardiac fibrosis and hypertrophy but does not restore the nitroso-redox imbalance in diabetic cardiomyopathy. Oxidative Medicine and Cellular Longevity, e7921363, 2017.

Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, L.; Guariguata, L.; Cho., N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research Clinical Practice, v.128, 40-50, 2017.

Paula, F.M.; Leite, N.C.; Vanzela, E.C.; Kurauti, M.A.; Freitas-Dias, R., Carneiro, E.M.; Boschero, A.C.; Zoppi, C.C. Exercise increases pancreatic β-cell viability in a model of type 1 diabetes through IL-6 signaling. FASEB Journal, v. 29:1805-1816, 2015.

Powers, S.K.; Hogan, M.C. Exercise and oxidative stress. Journal of Physiology, v. 594, 5079-5080, 2016.

Ramos-Filho, D.; Chicaybam, G.; de-Souza-Ferreira, E.; Guerra Martinez, C.; Kurtenbach, E.; Casimiro-Lopes, G.; Galina, A. High Intensity Interval Training (HIIT) induces specific changes in respiration and electron leakage in the mitochondria of different rat skeletal muscles. PLoS One, v. 10, e0131766, 2015.

Relive, M.; Mukhopadhyay, P.; Bátkai, S.; Hasko, L.; Liaudet, G.; Huffman, J.W.; Csiszar, U.; Ungvari, Z.; Mackie, K.; Chatterjee, S.; Pacher, P. CB2-receptor stimulation attenuates TNF-alpha-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyte-endothelial adhesion. American Journal Physiology Heart Circulation Physiology, v. 293, 2210-2218, 2007.

Rhea, M.R.; Phillips, W.T.; Burkett, L.N.; Stone, W.J.; Ball, S.D.; Alvar, B.A.; Thomas, A.B. A comparison of linear and daily undulating periodized programs with equated volume and intensity for local muscular endurance. Journal of Strength Conditional Research, v. 17, 82-87, 2003.

Wang, H.; Bei, Y.; Lu, Y.; Sun, W.; Liu, Q.; Wang, Y.; Cao, Y.; Chen, P.; Xiao, J.; Kong, X. Exercise prevents cardiac injury and improves mitochondrial biogenesis in advanced diabetic cardiomyopathy with PGC-1α and Akt activation. Cell Physiology Biochemistry, v. 35, 2159-2168, 2015.

Downloads

Publicado

29/10/2022

Como Citar

F. Pio, T., E. Orzari, L., A. Alves, A. ., C. L. Silveira, P., A.M. Esquisatto, M., A. M. de Andrade, T., Felonato, M., & A. Dalia, R. (2022). Swimming exercise modifies oxidative stress in skeletal and cardiac muscles of diabetic rats. Revista Saúde & Diversidade, 5(1), 11–18. https://doi.org/10.18227/hd.v5i1.7389

Edição

Seção

Artigos