Artificial Intelligence as a Driver of Innovation in Rondônia’s Agriculture
DOI:
https://doi.org/10.18227/1982-8470ragro.v20i00.8772Palavras-chave:
Agribusiness. Artificial intelligence. Sustainability. Productivity.Resumo
Rondônia’s Agriculture faces challenges in adopting precision technologies due to edaphoclimatic heterogeneity, land fragmentation, and limitations in digital infrastructure, as well as a scarcity of studies that quantify the impacts of artificial intelligence (AI) in the Amazonian context. This study presents a literature review, conducted according to the PRISMA protocol, focusing on the applications and impacts of AI mediated by drones, smart sensors, and predictive analysis systems in agriculture in Rondônia. A total of 31 national and international publications (2010–2025) from the Scopus, Web of Science, SciELO, and Google Scholar databases were analyzed using the PICO strategy, covering variables such as productivity, environmental sustainability, and economic feasibility. It was observed that, although few empirical studies have been carried out directly in Rondônia, evidence from other regions and tropical contexts indicates potential gains of up to 10 bags per hectare in grain production and reductions of up to 90% in pesticide use with AI-based solutions. These results, although inferential, suggest high potential for local application, especially in crops such as coffee, cocoa, and soybeans. In addition to promoting production efficiency, AI contributes to lowcarbon agricultural practices and the mitigation of environmental impacts. In economic terms, analyses indicate a return on investment within up to three harvests, depending on production scale, while small and medium-sized producers remain dependent on cooperatives and credit policies to enable access. It is concluded that AI is promising for agriculture in Rondônia, but its full adoption requires public policies, digital inclusion and the strengthening of regional research.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2026 REVISTA AGRO@MBIENTE ON-LINE

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Declaro em meu nome e em nome dos demais autores que aqui represento no ato da submissão deste artigo, à REVISTA AGRO@MBIENTE ON-LINE que: • 1. O conteúdo do artigo é resultado de dados originais e não publicados ou submetidos a outros periódicos. • 2. Além do autor principal, todos os co-autores participaram suficientemente do trabalho para tornar públicas as respectivas responsabilidades pelo conteúdo. • 3. Em caso de aceitação do artigo, os autores concordam que os direitos autorais a ele referentes se tornarão propriedade exclusiva da Revista Agro@mbiente On-line, vedada qualquer reprodução, total ou parcial, em qualquer outra parte ou meio de divulgação, impressa ou eletrônica, sem que a prévia e necessária autorização seja solicitada e que, se obtida, devem constar os agradecimentos à Revista Agro@mbiente On-line do Centro de Ciências Agrárias/UFRR.
