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Abstract. Let Γ+ be a normal subgroup of index 2n of a group Γ and γi ∈ Γ\Γ+

be involutions. We first prove that if Γ = Γ+ ⋊ (Z2(γ1) × · · · × Z2(γn)) then
Γ = (Γ+ ⋊ Z2(γ1) ⋊ · · · ⋊ Z2(γi−1)) ⋊ (Z2(γi) × · · · × Z2(γn)), where i =
2, · · · , n. Second, we use this result to prove the well-known Fubini theorem
for a subgroup of index 2n of a compact Lie group. Finally, we present an
application to invariant theory.
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1. Introduction
The Fubini theorem was introduced by Guido Fubini in 1907 ([Fubini 1907]). This
theorem presents many variants and reduces integration in multiple variables to more
simple iterated integrals. As a consequence, the integration order can be reversed in
iterated integrals.

In this paper, we work with definite integrals over a compact Lie group Γ.
These integrals are called Haar integrals and have the property of being invariant under
translation by elements of the group. In this case, the Fubini theorem presents a version
that is applied to subgroups of Lie group that have index 2, under the conditions that Γ is a
compact Lie group, Γ+ ⊂ Γ a subgroup of index 2 of Γ and Γ− = Γ\Γ+ the complement
set of Γ+ with respect to Γ. Then for any continuous f : Γ → R we have∫

Γ

f(γ) =
1

2

(∫
Γ+

f(γ) +

∫
Γ+

f(λγ)

)
,

for fixed λ ∈ Γ−. Of course, if λ ∈ Γ+ the equality is not valid, since∫
Γ

f(γ) ̸=
∫
Γ+

f(γ),

because Γ+ ⊊ Γ. Also, note that Γ− is a homogeneous space. This version of the theorem
has applications in recent work, one of which we can mention [Zeli 2013].

Our motivation to study the Fubini theorem came from the Lorentz orthogonal
group. This group has four connected components and presents important properties
in invariant theory ([Oliveira 2017] and [Manoel and Oliveira 2022]) and in Einstein’s
relativity physics ([Einstein 1905] and [Minkowski 1909]). The paper of [Carmeli 1986]
illustrates the application of Lorentz orthogonal group in relativity physics. Since the
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Lorentz group has four connected components, it can be written as the semi-direct product
normal subgroup of index 4 with the cartesian product of two involution subgroups.
Therefore, it is often necessary to apply Fubini theorem to the integral calculation in
normal subgroups of index larger than 2.

This paper is organized as follows: In Section 2, we present the basic concepts in
terms of which we can approach this theorem as the representation theory of Lie group
and Haar integral. We begin Section 3 by presenting an important algebraic result, namely
Proposition 1:

Let Γ+ be a normal subgroup of index 2n of Γ and γi ∈ Γ \ Γ+ involutions,
i ∈ {1, · · · , n}. If Γ can be decomposed as

Γ = Γ+ ⋊ (Z2(γ1)× · · · × Z2(γn)),

then
Γ = (Γ+ ⋊ Z2(γ1)⋊ · · ·⋊ Z2(γi))⋊ (Z2(γi+1)× · · · × Z2(γn)),

where i ∈ {1, · · · , n}.

This result allows us to make a new proof of the Fubini Theorem for normal Lie
subgroups of index 2n, Theorem 2:

Let Γ be a compact Lie group and Γ+ ⊂ Γ a normal subgroup of index 2n of Γ.
For any continuous f : Γ → R we have

∫
Γ

f(γ) =
1

2n

∑
i∈Nn

2

∫
Γ+

f(λiγ)

 ,

for λi ∈ Γ− fixed.

We conclude this paper by showing an application of this theorem in invariant
theory, specifically for the calculation of the Molien series.

2. Preliminaries

In this section we discuss some basic concepts for understanding the Fubini theorem.
We begin with definitions of group representation, group actions and the Haar integral.
We conclude this section by presenting a classic version of the Fubini theorem for group
actions.

2.1. Representations and group actions

Here we see a notion about Lie groups and representation theory. Let start with the Lie
group definition. More details on this topic can be found in [Hall 2015].

A Lie group Γ is a differentiable manifold with a group structure in which the
multiplication and inversion maps

Γ× Γ → Γ
(γ, δ) 7→ γδ

and
Γ → Γ
γ 7→ γ−1
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are smooth.

Cartan’s closed subgroup theorem asserts that any closed subgroup Γ+ of a Lie
group Γ is a Lie subgroup. This theorem admits the following converse: If Γ+ ⊆ Γ is an
embedded Lie subgroup, then Γ+ is closed. For more details, proofs and examples, see
[San Martin 2021], page 129. A Lie group is compact if it is compact as a topological
space.

Throughout this work, Γ represents a compact Lie group and V a vector space,
unless otherwise noted.

We define the left action of a Lie group Γ on a vector space V , or simply an action
of Γ on V , as a function φ : Γ× V → V such that for all γ, δ ∈ Γ and v ∈ V we have

φ(γ, φ(δ, v)) = φ(γδ, v) and φ(1, v) = v,

where 1 is the identity element of Γ. To abbreviate the notation, we use γv instead of
φ(γ, v) to indicate the action of γ on v.

An action of Γ on V corresponds to a group homomorphism

ρ : Γ −→ GL(n)

γ 7 −→ ργ

called the representation of Γ on V .

2.2. The Haar integral and the Fubini theorem

In this section we present the Haar integral and discuss the Fubini theorem for Lie groups.

We can identify any compact Lie group contained in GL(n) as a subgroup of the
orthogonal group O(n). This identification is made using a form of integration that is
invariant by translating the elements of Γ, called the Haar integral.

A proper definition of the Haar integral must be based on the Haar measure.
However, for our purposes, it is sufficient to consider the Haar integral as an operation
that satisfies the properties given in Definition 1. For more details on the Haar integral,
see [Nachbin 1965].

Definition 1 ([Golubitsky et al. 1988]). Let f : Γ → R be a continuous real function.
The operation

∫
γ∈Γ f(γ) or

∫
Γ
f it is a Haar integral in Γ if it satisfies the following

properties:

(i) Linearity: ∫
Γ

(af + bg) = a

∫
Γ

f + b

∫
Γ

g,

where f, g : Γ → R are continuous functions and a, b ∈ R.
(ii) Positivity: If f(γ) ≥ 0, for all γ ∈ Γ then∫

Γ

f ≥ 0.
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(iii) Translational invariance on the left:∫
γ∈Γ

f(δγ) =

∫
γ∈Γ

f(γ),

for any fixed δ ∈ Γ.

It is known that the Haar integral is unique [Hochschild 1965]. If the Lie group
is compact then the Haar integral is also invariant by right-hand translation and can be
normalized, that is,

∫
Γ
1 = 1.

If Γ is a finite Lie group then the Haar integral on Γ is∫
Γ

f(γ) ≡ 1

|Γ|
∑
γ∈Γ

f(γ).

Let Γ be a compact Lie group isomorphic to the special orthogonal group SO(2). Then,
for every continuous function f : SO(2) → R the Haar integral on Γ is∫

Γ

f(γ) ≡ 1

2π

∫ 2π

0

f(Rθ)dθ, (1)

where Rθ is a rotation of SO(2), with 0 ≤ θ ≤ 2π.

In general, it is not easy to calculate Haar integral, so the Fubini theorem
enunciated below, reduces the calculation of the Haar integral on Γ for integrals on Γ+, a
subgroup of index 2 of Γ.

Theorem 1 (The Fubini theorem). Let Γ be a compact Lie group and Γ+ ⊂ Γ a subgroup
of index 2 of Γ. For any continuous function f : Γ → R, we have∫

Γ

f(γ) =
1

2

(∫
Γ+

f(γ) +

∫
Γ+

f(λγ)

)
,

for fixed λ ∈ Γ−.

Note that since Γ+ is a subgroup of index 2 of Γ, then the Lie group Γ can be
written as a semi-direct product of Γ+ and Z2(λ), i.e.,

Γ = Γ+ ⋊ Z2(λ),

where Z2(λ) is a subgroup of Γ generated by an involution λ ∈ Γ−. Recall that the
semi-direct product of groups is the product of subgroups, where Γ+ is a normal subgroup
of Γ and the subgroups Γ+ and Z2(λ) have trivial intersection ([Robinson 2012]).

3. The Fubini theorem for Lie normal subgroups of index 2n

In this section we present the Fubini theorem for the case where the group Γ+ is a normal
subgroup of index 2n of Γ. We also present an application to invariant theory. For this we
need the following lemmas.
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Lemma 1 ([Oliveira 2017]). Let Γ be a Lie group and Γ+ be a normal subgroup of Γ.
Suppose that

Γ = Γ+ ⋊ (Z2(γ1)× Z2(γ2)),

where γ1, γ2 ∈ Γ \ Γ+ are distinct involutions. Then

Γ = (Γ+ ⋊ Z2(γ1))⋊ Z2(γ2).

Lemma 2. The group Γ = Γ1 × Γ2 × · · ·Γn is abelian if and only if Γi is abelian, with
i = 1, 2, · · · , n.

In the following proposition, we generalize Lemma 1 for the case where Γ+ is a
normal subgroup of index 2n of Γ. The proof is similar to the proof of Lemma 1 and
generalizes it.

Proposition 1. Let Γ+ be a normal subgroup of index 2n of Γ and γi ∈ Γ\Γ+ involutions,
i ∈ {1, · · · , n}. If Γ can be decomposed as

Γ = Γ+ ⋊ (Z2(γ1)× · · · × Z2(γn)),

then
Γ = (Γ+ ⋊ Z2(γ1)⋊ · · ·⋊ Z2(γi))⋊ (Z2(γi+1)× · · · × Z2(γn)),

where i ∈ {1, · · · , n}.

Proof. Let Γ+ be a normal subgroup of Γ and Γ = Γ+⋊Z2(γ1)⋊ · · ·⋊Z2(γi). Note that
Γ is also a normal subgroup of Γ. Let γ ∈ Γ and δ̄ ∈ Γ be any elements, with δ̄ = δγi and
γi = γm1

1 γm2
2 · · · γmi

i ∈ Z2(γ1)⋊ · · ·⋊ Z2(γi), where mj ∈ {0, 1}. Then

γδ̄γ−1 = γ(δγi)γ−1 = (γδγ−1)(γγiγ−1) = δ̃(γγiγ−1).

Since δ̃ ∈ Γ+ ⊂ Γ by hypothesis, we just need to show that γγiγ−1 ∈ Γ. Indeed, given
that Γ = Γ+ ⋊ (Z2(γ1) × · · · × Z2(γn)) so there is some δ1 ∈ Γ+ such that γ = δ1γ

n,
with γn ∈ Z2(γ1)× · · · × Z2(γn). Thus

γγiγ−1 = δ1γ
nγi(δ1γ

n)−1 = δ1γ
nγi(γn)−1δ−1

1 = δ1γ
iδ−1

1 ,

because the group Z2(γ1) × · · · × Z2(γn) is abelian, since each Z2(γi) is also abelian
(Lemma 2). As δ1 and γi belongs to Γ, then γγiγ−1 ∈ Γ. Therefore, Γ is a normal
subgroup of Γ. We claim that

Γ = Γ⋊ (Z2(γi+1)× · · · × Z2(γn)).

From hypothesis, we have that each γ ∈ Γ can be written in the form γ = δγn. Since
δ̄ = δγi ∈ Γ we have that γ = δ̄γ

mi+1

i+1 · · · γmn
n . Thus γ ∈ Γ⋊ (Z2(γi+1)× · · · × Z2(γn)).

The inclusion Γ⋊ (Z2(γi+1)× · · · × Z2(γn)) ⊂ Γ is clearly immediate. So it follows the
equality of the sets. It is also clear that

Γ ∩ (Z2(γi+1)× · · · × Z2(γn)) = {e},

because each γj /∈ Γ, with j = i+ 1, · · · , n.
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The decomposition for Γ seen above does not always hold. Firstly, the group Γ
must have at least one normal proper subgroup. Furthermore, an implicit condition is that
the group Γ has involutions. Borel’s book deals with some conditions for the existence of
this decomposition ([Borel 1998], Theorem 1.2). In that book, Borel defines Γ as having
many connected components and Γ+ as a maximal compact subgroup.

However, there are other groups in which this decomposition occurs. In addition
to the example presented at the end of this paper, consider the dihedral group D4. This
group has eight elements. The group ⟨Rπ⟩ generated by rotating π radians is a normal
subgroup of D4 with index four, and D4 = Rπ ⋊ (Z2(Sy)× Z2(Sx)), where Sx and Sy

are the reflections around the x and y axes, respectively. Note that group ⟨Rπ⟩ is not
maximal. In the case of the maximal compact group H generated by all rotations, we
have that D4 = H ⋊ Sx.

To simplify the notation, we take i = (i1, · · · , in) an element of Nn
2 , where N2 is

the set {0, 1}. Let λ = (λ1, · · · , λn), with λi ∈ Γ, we define the power λi = λi11 λ
i2
2 · · ·λinn .

In these terms, we enunciate the Fubini Theorem for normal Lie subgroups of even index
which is a particular case of the version presented in ([Bröcker and Tom Dieck 2013],
Proposition 5.16).

Theorem 2 (Fubini Theorem for normal Lie subgroups of index 2n). Let Γ be a compact
Lie group and Γ+ ⊂ Γ a normal subgroup of index 2n of Γ. For any continuous f : Γ → R
we have ∫

Γ

f(γ) =
1

2n

∑
i∈Nn

2

∫
Γ+

f(λiγ)

 ,

where λi’s are distinct involutions and λi ∈ Γ− are fixed.

Proof. We proceed by induction. For n = 1 we have the classical Fubini theorem,
Theorem 1. Assume that ∫

Γ̄

f(γ) =
1

2k

∑
i∈Nk

2

∫
Γ+

f(λiγ)


holds, where γ1, · · · , γk ∈ Γ \ Γ+ are distinct involutions and

Γ̄ = Γ+ ⋊ Z2(γ1)⋊ · · ·⋊ Z2(γk).

Suppose that
Γ = Γ+ ⋊ (Z2(γ1)× · · · × Z2(γk+1)),

where γk+1 is an involution and γk+1 /∈ Γ̄. By Proposition 1 we have that

Γ = (Γ+ ⋊ Z2(γ1)⋊ · · ·⋊ Z2(γk))⋊ Z2(γk+1) = Γ̄⋊ Z2(γk+1).

Note that Γ̄ is a normal subgroup of index 2 of Γ. Thus, we apply Theorem 1 and we get∫
Γ

f(γ) =
1

2

(∫
Γ̄

f(γ) +

∫
Γ̄

f(λk+1γ)

)
.
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Therefore, using the induction hypothesis, we have

∫
Γ

f(γ) =
1

2

 1

2k

∑
i∈Nk

2

∫
Γ+

f(λiγ) +
1

2k

∑
i∈Nk

2

∫
Γ+

f(λk+1λ
iγ)


=

1

2k+1

∑
i∈Nk

2

(∫
Γ+

f(λ0k+1λ
iγ) +

∫
Γ+

f(λk+1λ
iγ)

)

=
1

2k+1

∑
i∈Nk

2

 ∑
ik+1∈N2

∫
Γ+

f(λ
ik+1

k+1λ
iγ)


=

1

2k+1

∑
j∈Nk+1

2

∫
Γ+

f(λjγ),

once if λj = λiλ
ik+1

k+1 , with i ∈ Nk
2 and ik+1 ∈ N2, then j ∈ Nk+1

2 .

The importance of this theorem must be now evident. To calculate a Haar integral
over a Lie group Γ is tantamount to calculate the integral over a normal subgroup of index
2n of Γ, which is naturally a simpler task.

4. An application of Fubini theorem to invariant theory
In this section we present an application of the Theorem 2 used to calculate the Molien
series, a useful tool in invariant theory to estimate the number of invariant polynomials
by the action of a Lie group on a vector space.

Consider the action of a Lie group Γ on a vector space V . We say that a polynomial
map f : V → R is invariant by action of Γ on V , or Γ-invariant, if

f(γx) = f(x),

for all x ∈ V and γ ∈ Γ. It is not difficult to show that the set of all the Γ-invariant
polynomials has the structure of a ring, which we denote by P(Γ). It is known that if Γ is
a compact Lie group then the ring of invariant polynomials is finitely generated, this case
is known as the Hilbert-Weyl Theorem ([Golubitsky et al. 1988]). The result is also valid
for the case where Γ is a reductive group ([Luna 1976] and [Derksen and Kemper 2015]).
If the set of generators of the invariant polynomials is finite, it is called the Hilbert basis
of the ring P(Γ).

The ring PV = R[x1, · · · , xn] is a graded algebra over R, i.e.,

PV =
∞⊕
d=0

PVd
,

where PVd
is the vector subspace of homogeneous polynomial maps of degree d

([Sturmfels 2008]). Let Pd(Γ) be the subspace of all homogeneous Γ-invariants
polynomials of degree d. Since the action of Γ in V is linear then γf ∈ Pd(Γ), for
all γ ∈ Γ and f ∈ Pd(Γ). Therefore, the ring of Γ-invariants polynomials P(Γ) is a
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graded algebra over R. This property is very useful because we can calculate the invariant
polynomials degree to degree, since an invariant polynomial of degree m can be written
as a sum of invariant polynomials of degrees 1, 2, · · · ,m.

The Hilbert series of graded algebra P(Γ) is the function given by

ΦΓ(t) =
∞∑
d=0

dim(Pd(Γ))t
d.

Denoting by cd the number of invariant polynomials of degree d on V , one defines
the Hilbert series

ΦΓ(t) =
∞∑
d=0

cdt
d.

The following theorem is classical result that gives us an explicit form of the
Hilbert series in terms of the matrix representations of Γ. The Hilbert series defined in
this way is called the Molien series.

Theorem 3 (Molien theorem). The Hilbert series of the invariant ring P(Γ) equals

ΦΓ(t) =
1

|Γ|
∑
γ∈Γ

1

(det(I − tγ))
, if Γ is a finite discrete group and

ΦΓ(t) =

∫
γ∈Γ

1

(det(I − tγ))
, if Γ is a compact group.

Proof. See [Molien 1897] for the original proof of the finite case, and [Sattinger 2006]
for the extension to a compact group.

Thus, the coefficients cd of the Molien series gives us an estimate of the amount
of invariant polynomials of degree d.

In order to show an application of Theorem 2, let us use the invariant theory the
action of the Lorentz group on Minkowski space.

By definition, the Lorentz group O(n, 1) is a subgroup of the Poincaré group that
preserves the nondegenerate symmetric bilinear form ⟨, ⟩ : Rn+1 × Rn+1 −→ R defined
by

⟨x, y⟩ =
n∑

i=1

xiyi − xn+1yn+1,

called Lorentz inner pseudo-product and also preserve the Lorentz distance. However, the
Lorentz group does not contain all the transformations that preserve the Lorentz distance,
this is a property of the Poincaré group, the group of isometries in the Minkowski space.
The space Rn+1 endowed with the metric induced by Lorentz inner pseudo-product ⟨, ⟩ is
called Minkowski space and is denoted by Rn+1

1 .
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Consider the Lorentz subgroup

Γ = Γ+ ⋊ (Z2(λ1)× Z2(λ2)) ⊂ O(3, 1),

where

Γ+ :=

{(
Rϕ 0
0 I2

)
: Rϕ ∈ SO(2)

}
and Z2(λ1) and Z2(λ2) are generated by involutions of O(3, 1) given by

λ1 :=

(
I2 0
0 S−

h (θ)

)
, with S−

h (θ) =

(
cosh(θ) sinh(θ)
− sinh(θ) − cosh(θ)

)
and

λ2 :=

(
I2 0
0 S+

h (θ)

)
, with S+

h (θ) =

(
− cosh(θ) − sinh(θ)
sinh(θ) cosh(θ)

)
,

where θ ∈ R is fixed. Note that

1. Γ+ is a compact subgroup of O(3, 1) isomorphic to SO(2)× {I2}.
2. Once Γ is abelian then Γ+ is a normal subgroup of Γ.
3. As Γ = Γ+ ∪· λ1Γ+ ∪· λ2Γ+ ∪· λ1λ2Γ+, where

λ1λ2 =

(
I2 0
0 −I2

)
,

then Γ/Γ+ = {I4,−I4, λ1, λ2}. So, |Γ/Γ+|= 4.

Therefore, Γ+ is a normal compact subgroup of Γ with index four.

Consider the standard action of Γ in R4
1. We want to calculate the Molien series

of Γ given by

ΦΓ(t) =

∫
Γ

1

det(I4 − tγ)
.

By Theorem 2, the above integral can be written as

ΦΓ(t) =
1

4

(∫
Γ+

1

det(I4 − tγ)
+

∫
Γ+

1

det(I4 − tλ1γ)
+

∫
Γ+

1

det(I4 − tλ2γ)

+

∫
Γ+

1

det(I4 − tλ1λ2γ)

)
.

Note that

I4 − tγ =

(
I2 0
0 I2

)
− t

(
Rϕ 0
0 I2

)
=

(
I2 − tRϕ 0

0 I2 − tI2

)
,

therefore

det(I4 − tγ) = det(I2 − tRϕ) det(I2 − tI2) = (−2t cosϕ+ t2 + 1)(t− 1)2.
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In the same way, we have

det(I4 − tλ1γ) = det(I2 − tRϕ) det(I2 − tS−
h ) = (2t cosϕ− t2 + 1)(t2 − 1),

det(I4 − tλ2γ) = det(I2 − tRϕ) det(I2 − tS+
h ) = (2t cosϕ− t2 + 1)(t2 − 1),

det(I4 − tλ1λ2γ) = det(I2 − tRϕ) det(I2 + tI2) = (−2t cosϕ+ t2 + 1)(t+ 1)2.

Thus, since the groups Γ+ and SO(2) × {I2} are isomorphic then we can use the Haar
integral on SO(2) presented in (1):

ΦΓ(t) =
1

8π

(∫ 2π

0

dϕ

(−2t cosϕ+ t2 + 1)(t− 1)2
+

∫ 2π

0

dϕ

(2t cosϕ− t2 + 1)(t2 − 1)

+

∫ 2π

0

dϕ

(2t cosϕ− t2 + 1)(t2 − 1)
+

∫ 2π

0

dϕ

(−2t cosϕ+ t2 + 1)(t+ 1)2

)
=

1

8π

∫ 2π

0

4

(t− 1)2(t+ 1)2(−2t cosϕ+ t2 + 1)
dϕ.

So, we use Maple to calculate the Molien series

ΦΓ(t) = 1 + 3t2 + 6t4 + 10t6 + 15t8 + 21t10 + 28t12 + 36t14 + 45t16 +O(t18),

which shows that there are three invariant polynomials of degree two, six invariant
polynomials of degree four, ten invariant polynomials of degree six and so on. Indeed, a
Hilbert basis of the ring P(Γ) is given by

{x2 + y2, z2 − t2, ((cosh(θ)− 1)t+ sinh(θ)z)2}.

Using Maple to calculate the Molien series: We conclude this paper by
presenting the steps used in Maple to calculate the Molien series

1. Enable the package LinearAlgebra:

with(LinearAlgebra);

2. Define the matrices:

I2 =

(
1 0
0 1

)
;

Rϕ =

(
cosϕ − sinϕ
sinϕ cosϕ

)
;

S−
h (θ) =

(
cosh(θ) sinh(θ)
− sinh(θ) − cosh(θ)

)
;

S+
h (θ) =

(
− cosh(θ) − sinh(θ)
sinh(θ) cosh(θ)

)
;
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3. Calculate the determinants of the matrices defined in the previous step

x := simplify(Determinant(I2 − tRϕ) ·Determinant(I2 − tI2));

y := simplify(Determinant(I2 − tRϕ) ·Determinant(I2 − tS−
h (θ)));

z := simplify(Determinant(I2 − tRϕ) ·Determinant(I2 − tS+
h (θ)));

w := simplify(Determinant(I2 − tRϕ) ·Determinant(I2 − tS−
h (θ)S

+
h (θ)));

4. Simplify ΦΓ(t):

simplify

(
1

x
+

1

y
+

1

z
+

1

w

)
;

After pressing "Enter", the following expression appears

4

(t− 1)2(t+ 1)2(−2t cos(a) + t2 + 1)
.

5. Now, just calculate the integral:

simplify

(
1

8π

∫ 2π

0

4

(t− 1)2(t+ 1)2(−2t cosϕ+ t2 + 1)
dϕ

)
;

returning the following result

csgn( (t+1)2√
(t−1)2(t+1)2

)csgn(t2 − 1)

(t− 1)3(t+ 1)3
,

where the function csgn is defined by

csgn(ψ(t)) =

{
1, if ℜ(ψ(t)) > 0 or ℜ(ψ(t)) = 0 and ℑ(ψ(t)) > 0

−1, if ℜ(ψ(t)) < 0 or ℜ(ψ(t)) = 0 and ℑ(ψ(t)) < 0
,

also ℜ(z) and ℑ(z) is a real part and imaginary part of a complex number z,
respectively.

6. Finally, we calculate the series:

series(
csgn( (t+1)2√

(t−1)2(t+1)2
)csgn(t2 − 1)

(t− 1)3(t+ 1)3
, t, 18);

and from there we get the following result:

1 + 3t2 + 6t4 + 10t6 + 15t8 + 21t10 + 28t12 + 36t14 + 45t16 +O(t18).
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