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Abstract. This paper discusses are some topics Analytic Geometry, stud-
ied in basic education in the context of Euclidean space n-dimensional.
Presents itself for example, the concepts of hyperplane and (n− 1)-sphere,
which correspond to the high school to the circle and line, respectively. And
in the said geometry are studied the relative positions between straight line
and circumference. Similarly, we study the relative positions between the
hyperplane and the (n−1)-sphere in this space. In this context, it presents
a theorem that characterizes the relative positions.
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1. Introduction

In the Plane Analytic Geometry we study the relative positions between circumfer-
ence and straight line. In this work we present a study in Euclidean space Rn of the
relative positions between the hyperplane and the (n − 1)-sphere. Good part this
paper is part of the dissertation of the second author, produced at Professional Mas-
ter’s degree in Mathematics in National Network - PROFMAT, Federal University
of Roraima-UFRR, see reference [Lamounier 2014].

Initially, in section two, is introduced the mathematics necessary for the
development of the study. In section three is studied the distance between point
and hyperplane and are reminded the particular cases in Euclidean spaces R2 and
R3. In section four is studied in Euclidean space Rn, the relative positions between
the hyperplane and the (n− 1)-sphere. On that occasion, we noted that the study
of the relative positions between hyperplanes and of the relative positions between
(n− 1)-spheres are in [Oliveira e Lamounier 2015].

2. Preliminaries

In this section, we will present the mathematical that will serve as a theoretical
support for the development of the article. The demonstrations of results can be
found in the references [Lima 2005] and [Spivak 2003, p. 6].

Definition 2.1. Let n ∈ Z+ be, denotes by Rn the cartesian product of n factors
equal to R, i.e., Rn = R× . . .× R.
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The following operations make Rn a R-vector space.

Given x = (x1, . . . , xn), y = (y1, . . . , yn) vectors of Rn and a real number α,
the sum operation x+ y and the operation product of a vector by a scalar α · x are
defined by:

i) x+ y = (x1 + y1, . . . , xn + yn);
ii) α · x = (α · x1, . . . , α · xn).

Note 2.1. The neutral element of addition is the 0 = (0, . . . , 0) and the symmetrical
element of x = (x1, . . . , xn) is −x = (−x1, . . . ,−xn), since x+ (−x) = 0.

The concept of symmetry is as follows: be x = (x1, . . . , xn), y = (y1, . . . , yn) ∈
Rn, y is the symmetrical of x if and only if y1 = −x1, . . . , yn = −xn.

Given two vectors belonging to the vector space Rn, x = (x1, . . . , xn) and
y = (y1, . . . , yn), the inner product of x and y considered here is given by

〈x, y〉 =
∑n

i=1 xiyi,

known as usual inner product.

The vector space Rn on R with the usual inner product is called n-Euclidean
space.

It is proved that the usual inner product satisfies the following properties:

1. < x, x >≥ 0, for all x ∈ Rn and < x, y >= 0 if and only if x = 0.
2. < x, y >=< y, x >, for all x, y ∈ Rn.
3. < x+ y, z >=< x, z > + < y, z >, for all x, y, z ∈ Rn.
4. < λx, y >= λ < x, y >, for all x, y ∈ Rn and for all λ ∈ R.

Example 2.1. We have the following Euclidean spaces: the line R1 = R; the plane
R2 = {(x, y) | x, y ∈ R} and the space R3 = {(x, y, z) | x, y, z ∈ R}.

We remember that two vectors x, y ∈ Rn are orthogonal when 〈x, y〉 = 0.

For our study we consider the Euclidean norm, that is, the real number given
by ‖x‖ =

√
〈x, x〉, where x ∈ Rn.

From the inner product it is proved that the norm satisfies the following
properties:

1. ‖x‖ ≥ 0, for all x ∈ R, and ‖x‖ > 0 if x 6= 0.
2. ‖λx‖ = |λ|‖x‖, for all λ ∈ R and x ∈ Rn.
3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖, for all x, y ∈ Rn.

Based on the norm can define the distance Rn as follows:

Let x, y ∈ Rn be, the distance of x to y is defined by

d(x, y) = ‖x− y‖·

Let P = (p1, . . . , pn) and Q = (q1, . . . , qn) be, points of Rn, then

d(P,Q) =
√∑n

i=1(pi − qi)2.
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The concept of hyperplane can be found in [Coelho 2001] and [Lang 2003],
but here will state considering the vector space Rn.

Definition 2.2. Let v be a not null vector and P a point in Euclidean space Rn.
Denominates hyperplane to set

Γn−1
v = {X ∈ Rn | 〈X − P, v〉 = 0}.

Considering the point P = (p1, . . . , pn) and the not null vector v =
(v1, . . . , vn), given X = (x1, . . . , xn) ∈ Γn−1

v then 〈(X − P ), v〉 = 0. Therefore
v ⊥ (X − P ), where X − P = (x1 − p1, . . . , xn − pn). So,

〈(x1 − p1, . . . , xn − pn), (v1, . . . , vn)〉 = v1x1 + . . .+ vnxn − p1v1 − . . .− pnvn.

That is,

v1x1 + . . .+ vnxn + d = 0, where d = −p1v1 − . . .− pnvn.

And this is the equation of the hyperplane Γn−1
v passing through point P and

it is normal to vector v = (v1, . . . , vn).

Example 2.2. In the plane, case in which n = 2, the hyperplane is the well known
equation of a line v1x1 + v2x2 + d = 0, object of study of plane analytic geometry.

Example 2.3. In the space, case in which n = 3, the hyperplane is the well known
equation of a plane v1x1 + v2x2 + v3x3 + d = 0.

3. Distance from a point to a hyperplane

We start the session with the version of the Pythagorean theorem for Eu-
clidean space Rn, present in [Hönig 1976, p. 190] and proposed as an exercise in
[Spivak 2003, p. 6]. Then, we present the definition of distance from a point to a
hyperplane in the space Rn.

Theorem 3.1 (Pythagoras theorem ). Let A, B and C be points in Rn such that
−→
AC =

−→
AB +

−−→
BC. Then,

−→
AB ⊥

−−→
BC ⇐⇒ ‖

−→
AC‖2 = ‖

−→
AB‖2 + ‖

−−→
BC‖2.

Proof. Let A, B and C be points in Rn, then

‖
−→
AC‖2 = ‖

−→
AB +

−−→
BC‖2

= 〈
−→
AB +

−−→
BC,

−→
AB +

−−→
BC〉

= 〈
−→
AB,
−→
AB〉+ 2〈

−→
AB,
−−→
BC〉+ 〈

−−→
BC,

−−→
BC〉

= ‖
−→
AB‖2 + ‖

−−→
BC‖2 + 2〈

−→
AB,
−−→
BC〉.

Therefore,
−→
AB ⊥

−−→
BC ⇐⇒ ‖

−→
AC‖2 = ‖

−→
AB‖2 + ‖

−−→
BC‖2.

Corollary 3.1. Let A,B and C be points in Rn, such that
−→
AC =

−→
AB +

−−→
BC and−→

AB⊥
−−→
BC. Then:
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i) ‖
−→
AB‖ ≤ ‖

−→
AC‖;

ii) ‖
−−→
BC‖ ≤ ‖

−→
AC‖.

Proof. If
−→
AB =

−→
0 then, by Theorem 3.1, ‖

−→
AC‖2 = ‖

−−→
BC‖2 ⇒ ‖

−→
AC‖ = ‖

−−→
BC‖.

Analogously, if
−−→
BC =

−→
0 then, by Therem 3.1, we have ‖

−→
AC‖ = ‖

−→
AB‖.

We will see now the case in which the vectors
−→
AB and

−−→
BC not are null.

If
−→
AB ⊥

−−→
BC by Theorem 3.1 we have

‖
−→
AC‖2 = ‖

−→
AB‖2 + ‖

−−→
BC‖2 ⇒ ‖

−→
AC‖2 > ‖

−→
AB‖2 ⇒ ‖

−→
AC‖ > ‖

−→
AB‖.

The proof of (ii) is analogous.

Corollary 3.2. Let A,B and C be points in Rn such that C 6= B,
−→
AC =

−→
AB +

−−→
BC

e
−→
AB⊥

−−→
BC. Then d(A,B) < d(A,C).

Proof. By Corollary 3.1(i) and by Theorem 3.1 we obtain d(A,B) < d(A,C).

Definition 3.1. The distance from a point P0 in Rn to a hyperplane Γn−1
v , where

P0 /∈ Γn−1
v is given as the lowest of the distances from P0 to the points of Γn−1

v , that
is,

d(P0,Γ
n−1
v ) = min{d(P0, Q);Q ∈ Γn−1

v }.
The next statement will be considered here as an axiom, however, in the

reference [Kreyszig 1978, p. 144] is a theorem that needs analysis techniques to
perform the proof.

Axiom 3.1. Let Γn−1
v be a hyperplane, P0 a point of the Rn and v a normal vector to

Γn−1
v . There exists a unique point P ′ ∈ Γn−1

v such that
−−→
P0P

′//v and d(P0,Γ
n−1
v ) =

d(P0, P
′).

Example 3.1.

a) As we know that the hyperplane in R2 is a line, we will denote by r. If P0 is
a point of the R2 − r, then by Axiom 3.1 there exists a unique point Q ∈ r
such that d(P0, r) = d(P0, Q), where

−−→
P0Q ⊥ r.

b) The hyperplane in R3 is a plane of the space and we will denote by π. If P0

is a point of the R3−π, then by Axiom 3.1 there exists a unique point Q ∈ π
such that d(P0, π) = d(P0, Q), where

−−→
P0Q ⊥ π.

Now we will present a formula for calculating the distance from a point to
the hyperplane. Initially we will remember the formula in the following cases:

1. In R2, consider tha line Γ1
v : ax + by + d = 0 (hyperplane), generated by

vector v = (a, b), and the point P0 = (x01, x
0
2) ∈ R2 − Γ1

v. The distance from
point to plane is given by

d(P0,Γ
1
v) =

|ax01 + bx02 + d|√
a2 + b2

·
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2. In R3, consider the plane Γ2
v : ax + by + cz + d = 0 (hyperplane), generated

by vector v = (a, b, c), and the point P0 = (x01, x
2
2, x

0
3) ∈ R3 − Γ2

v. The
distance from the point to plane is given by

d(P0,Γ
2
v) =

|ax01 + bx02 + cx03 + d|√
a2 + b2 + c2

·

The following theorem gives us the formula for calculating the distance from a
point P0 ∈ Rn to a hyperplane Γn−1

v . We observed that it is not in [Lamounier 2014].

Theorem 3.2. let Γn−1
v : a1x1 + · · · + anxn + d = 0 a hyperplane and let P0 =

(x01, . · · · , x0n) be a point in Rn − Γn−1
v . Then a distance between the point P0 and

the hyperplane Γn−1
v is given by:

d(P0,Γ
n−1
v ) =

|a1x01 + · · ·+ anx
0
n + d|√

a21 + · · ·+ a2n
·

Proof. The proof was adapted from [Steinbruch e Winterle 1987, p.196].

Let Γn−1
v : a1x1 + · · · + anxn + d = 0 be the hyperplane equation with the

normal vector not null v = (a1, · · · , an), through a point P and P0 = (x01, . · · · , x0n) ∈
Rn−Γn−1

v , then by Axiom 3.1 exists a unique point Q ∈ Γn−1
v such that d(P0,Γ

n−1
v ) =

d(P0, Q), where
−−→
P0Q//v. Then, exist λ ∈ R such that Q− P0 = λv, that is,

P0 = Q− λv. (1)

Being P0 = Q− cv then P0 − P = (Q− P ) + λv. Therefore,

< P0 − P, v > = < Q− P, v > +λ < v, v >

= λ < v, v > .

Being v 6= 0, then

λ =
< P0 − P, v >
‖ v ‖2

· (2)

From (1) and (2) we obtain

P0 = Q− < P0 − P, v >
‖ v ‖2

v.

Then, the distance from P0 to closest point Q is equal to

d(P0, Q) = ‖ P0 −Q ‖

= ‖ −< P0 − P, v >
‖ v ‖2

v ‖

=
|< P0 − P, v >|

‖ v ‖
·
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And as d(Γn−1
v , P0) = d(P0, Q) and d = − < P, v >, then

d(P0,Γ
n−1
v ) =

|a1x01 + . . .+ anx
0
n + d|√

a21 + . . .+ a2n
·

We present below the definition of (n − 1)-sphere, or hypersphere, and the
equation that describes it in Rn. In [Millman 1977] and [Mendelson 1990] the defi-
nition of (n− 1)-sphere is restricted to the case where the radius worth one and the
center is the origin. Without loss of generality we will consider the (n−1)-sphere in
which the radius is greater than or equal to one and with center at a point arbitrary
of Rn.
Definition 3.2. A (n− 1)-sphere in Rn with radius r > 0 and center c is the set

Sn−1
r (c) = {x ∈ Rn; d(c, x) = r}, where n is a positive integer.

Note that, being d(c, x) = r, where x = (x1, ..., xn) and c = (c1, ..., cn), then
(x1− c1)2 + ...+ (xn− cn)2 = r2 is the equation of the (n− 1)-sphere of center c and
radius r. Therefore, the (n− 1)-sphere can be written as the set

Sn−1
r (c) = {(x1, ..., xn) ∈ Rn |

n∑
i=1

(xi − ci)2 = r2}.

Example 3.2. Given c = (c1, ..., cn) ∈ Rn e r > 0, then:

1. For n = 1, the 0-sphere S0
r(c) = {x ∈ R | (x− c)2 = r2} = {c− r, c+ r};

2. For n = 2, the 1-sphere

S1
r(c) = {(x1, x2) ∈ R2 |

2∑
i=1

(xi − ci)2 = r2},

is the circle with center c = (c1, c2) and radius r > 0.

3. For n = 3, the 2-sphere

S2
r(c) = {(x1, x2, x3) ∈ R3 |

3∑
i=1

(xi − ci)2 = r2},

is the sphere with center c = (c1, c2, c3) and radius r > 0.

4. Relative positions between hyperplane and (n − 1)-sphere

In the basic education we study the relative positions between the line and the circle,
in this case the line, as we saw earlier, is a hyperplane and the circle is a 1-sphere
in R2. In this section we study these relative positions in space Euclidean Rn.

The next theorem characterizes the relative position between a hyperplane
and (n − 1) - sphere. Cited in the article [Oliveira e Lamounier 2015], without his
proof, it generalizes the cases where n = 2 (plane) and n = 3 (space). Here, we
present a demonstration of the said result.
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Theorem 4.1. Let Γn−1
v be a hyperplane passing through point p = (p1, ..., pn) in Rn

and v = (v1, ..., vn). Let Sn−1
r (c) be a (n− 1)-sphere with center c = (c1, ..., cn) and

radius r > 0. Then:

a) d(c,Γn−1
v ) > r if and only if Γn−1

v ∩ Sn−1
r (c) = ∅;

b) d(c,Γn−1
v ) = r if and only if Γn−1

v ∩ Sn−1
r (c) = {p0}. In this case we say that

the hyperplane is tangent to (n− 1) - sphere;

c) d(c,Γn−1
v ) < r if and only if Sn−1

r (c)∩Γn−1
v = Sn−2√

r2−k2(q), where k = d(c,Γn−1
v )

and Sn−2√
r2−k2(q) is the (n−2)- sphere contained in the hyperplane Γn−1

v which

has radius
√
r2 − k2 and center q, point of intersection of the plane Γn−1

v with
the line l normal to Γn−1

v passing through c, with normal vector v.

Proof. Without loss of generality we will consider:

i) The (n − 1)-sphere Sn−1
r (c) = {(x1, ..., xn) ∈ Rn;x21 + ... + x2n = r2}, with

center at the origin o = (0, ..., 0), wich of simplified mode is denoted by Sn−1
r ;

ii) The hyperplane Γn−1
en = {(x1, ..., xn−1, xn) ∈ Rn; xn = k constante }, where

en = (0, ..., 0, 1) is the normal vector to hyperplane.

In this first part of the proof we will prove the implication from left to right.

a1) Suppose that d(o,Γn−1
en ) > r, then by Axiom 3.1, there exists a unique p′ ∈

Γn−1
en such that

−→
op′ ⊥ Γn−1

en and d(o,Γn−1
en ) = d(o, p′) > r.

So we have:
d(o, q) ≥ d(o, p′) > r for all q ∈ Γn−1

en .

Then q /∈ Sn−1
r for all q ∈ Γn−1

en and therefore Sn−1
r ∩ Γn−1

en = ∅.

b1) Suppose that d(0,Γn−1
en ) = r, we conclude then, by Axiom 3.1, that exists

a unique q0 ∈ Γn−1
en such that −→oq0 ⊥ Γn−1

en and d(o,Γn−1
en ) = d(o, q0), then

q0 ∈ Sn−1
r .

Let b ∈ Γn−1
en be then d(o, b) > d(o, q0). Therefore, for all b ∈ Γn−1−{q0}, we

have b /∈ Sn−1
r . Therefore Γn−1

en ∩ Sn−1
r = {q0}.

c1) If d(o,Γn−1
en ) < r, then by Axiom 3.1 that exists a unique point p0 ∈ Γn−1

en

such that d(o,Γn−1
en ) = d(p0, o) where −→op0 ⊥ Γn−1

en and p0 ∈ l, where l is a line
generated by en = (0, ..., 0, 1), therefore p0 = (0, ..., 0, k).
Being d(o,Γn−1

en ) < r then d(o, p0) =| k |< r and therefore r2 − k2 > 0.

We can consider Sn−2√
r2−k2(p0) = {p ∈ Γn−1

en ; d(p, p0) =
√
r2 − k2}.

Let (x1, ..., xn−1, k) ∈ Sn−2√
r2−k2(p0) be, then

d(p, p0) =
√
r2 − k2√

(x1 − 0)2 + ...+ (xn−1 − 0)2 + (k − k)2 =
√
r2 − k2

x21 + ...+ x2n−1 = r2 − k2

x21 + ...+ x2n−1 + k2 = r2.
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We concluded that (x1, ..., xn−1, k) ∈ Sn−1
r . Therefore Sn−2√

r2−k2(p0) ⊂ Sn−1
r

and as Sn−2√
r2−k2(p0) ⊂ Γn−1

en then

Sn−2√
r2−k2(p0) ⊂ Sn−1

r ∩ Γn−1
en . (3)

We concluded then that Sn−1
r ∩ Γn−1

en 6= ∅. Now, let p ∈ Sn−1
r ∩ Γn−1

en be, this
is, p ∈ Γn−1

en and p ∈ Sn−1
r , then

x21 + ...+ x2n−1 + k2 = r2

x21 + ...+ x2n−1 = r2 − k2.

Then p ∈ Sn−2√
r2−k2(p0) and therefore

Γn−1
en ∩ Sn−1

r ⊂ Sn−2√
r2−k2(p0). (4)

From (3) and (4) concluded that

Γn−1
en ∩ Sn−1

r = Sn−2√
r2−k2(p0).

In this second part of the proof we will prove the implication from rigth to
left .

a2) We will prove that: If Γn−1
en ∩ Sn−1

r = ∅ then d(0,Γn−1) > r.

Equivalently: if d(o,Γn−1) ≤ r, then Γn−1
en ∩ S

n−1
r 6= ∅. But this follows from

(b1) e (c1).
If d(o,Γn−1

en ) = r from (b1) we have Γn−1
en ∩ Sn−1

r = {p} 6= ∅.
If d(o,Γn−1

en ) < r from (c1) we have Γn−1
en ∩ Sn−1

r = Sn−2√
r2−k2(po) 6= ∅, where

k = d(o,Γn−1
en ).

Therefore, if Γn−1
en ∩ Sn−1

r = ∅, then d(o,Γn−1
en ) > r.

b2) We will prove that: If Γn−1
en ∩ Sn−1

r = {p0}, then d(o,Γn−1
en ) = r.

Equivalently, if d(o,Γn−1
en ) 6= r then Γn−1

en ∩ Sn−1
r it is not a single point.

For d(o,Γn−1
en ) 6= r we have two cases: d(o,Γn−1

en ) > r or d(o,Γn−1
en ) < r.

In the case where d(o,Γn−1
en ) > r, from (a1) we have Γn−1

en ∩ Sn−1
r = ∅.

While, if d(o,Γn−1
en ) < r, from (c1) we have Γn−1

en ∩ Sn−1
r = Sn−2√

r2−k2(po).

Therefore, if Γn−1
en ∩ Sn−1

r = {p0}, then d(o,Γn−1
en ) = r.

c2) Now we will prove that: If Γn−1
en ∩ Sn−1

r = Sn−2√
r2−k2(po) then d(o,Γn−1

en ) < r.

Equivalently: if d(o,Γn−1
en ) ≥ r, then Γn−1

en ∩ Sn−1
r 6= Sn−2√

r2−k2(po).

If d(o,Γn−1
en ) = r by proved in (b1) we have that Γn−1

en ∩ Sn−1
r = {p0}.

And if d(o,Γn−1
en ) > r, from (a1) we have Γn−1

en ∩ Sn−1
r = ∅.

Thefore, if Γn−1
en ∩ Sn−1

r = Sn−2√
r2−k2(po), then d(o,Γn−1

en ) < r.

Let us now see examples of relative positions between plane Γ2
v and unitary

2-sphere and center at the origin S2
1.
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Example 4.1.

If d(o,Γ2
v) > 1 then the plane Γ2

v does not intercept the 2-sphere unitary S2
1. Let

see a example: We will consider the hyperplane Γ2
v with equation : x − z + 2 = 0,

where v = (1, 0,−1), then by Theorem 3.2 d(o,Γ2
v) =

√
2 > 1. By Theorem 4.1 we

have S2
1 ∩ Γ2

v = ∅. See the figure 4.1.

Figure 1.

Example 4.2.

If d(o,Γ2
v) = 1 then the hyperplane Γ2

v is tangent to 2-sphere S2
1, in the point P . Let

see the example: We will consider the hyperplane Γ2
v with equation x− z+

√
2 = 0,

where v = (1, 0,−1), then by Theorem 3.2 we have d(o,Γ2
v) = 1. By Theorem 4.1

we have S2
1 ∩ Γ2

v = {P}, where P = (−
√

2

2
, 0,

√
2

2
). See the figure 4.2.

Figure 2.
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Example 4.3.

If d(o,Γ2
v) < 1 then the plane Γ2

v intersects 2-sphere S2
1 forming a 1-sphere S1

r(q)
(circumference) of radius r =

√
1− d(c,Γ2

v)
2, as shown the example : Consider

the hyperplane Γ2
v with equation y − z −

√
2

2
= 0, where v = (0, 1,−1), then by

Theorem 3.2 d(o,Γ2
v) = 1/2 < 1. By Theorem 4.1 we have S2

1 ∩ Γ2
v = S1√

3/2
(q),

where q = (0,

√
2

4
,−
√

2

4
). See the figure 4.3.

Figure 3.

5. Conclusions

In this article we studied the relative positions between the hyperplane and the
n-sphere. Was presented, a result that generalizes to the Euclidean n-space, the
problem of how to characterize the relative positions: between the line and the
circle, in the case of plane, and between the plane and the sphere, in the case
of Euclidean 3-space. We call attention to the case of the characterization of the
relative position of the hyperplane with the (n-1)-esfera, when the distance to the
hyperplane is less than the radius of the sphere, is a (n-2)-sphere and not a circle as
in the case of the Euclidean 3-space.
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Matemática em Rede Nacional-PROFMAT)- Universidade Federal de Roraima.
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